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This study presents an integrated molecular and cytogenetic characterization 
of Chaetostoma bifurcum from Ecuador, which belongs to the Hypostominae 
subfamily. Morphological identification was confirmed by molecular data 
using cytochrome c oxidase I and cytochrome b sequences. Karyotype 
analysis was performed with conventional staining and fluorescence in situ 
hybridization (FISH). The karyotype comprises 48 metacentric/submetacentric 
and 6 subtelocentric/acrocentric chromosomes, maintaining the chromosome 
number (2n = 54) considered ancestral in Loricariidae, though uncommon 
in Hypostominae. No differences were observed between female and male 
karyotypes, suggesting absence of heteromorphic sex chromosomes. Faint 
interstitial telomeric sequences (ITSs) were detected on a submetacentric pair, 
whose origin remains unclear and may represent remnants of translocations 
resulting from DNA repair mechanisms or be part of satellite DNA. The 18S 
rDNA and 5S rDNA loci are localized on distinct chromosomes (pair 11 and 6, 
respectively), deviating from the plesiomorphic synteny observed in Loricariidae. 
This pattern may reflect both evolutionary history but also the effect of ecological 
pressures. Thus, comparative analyses across other Chaetostoma species are 
essential to determine whether these karyotypic traits reflect their phylogenetic 
position or specific adaptive processes since this study corresponds to the first 
characterization for the genus.
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Cytogenetics and molecular of Chaetostoma bifurcum

Este estudo apresenta uma caracterização molecular e citogenética integrada 
de Chaetostoma bifurcum do Equador, pertencente à subfamília Hypostominae. 
A identificação morfológica foi confirmada por dados moleculares utilizando 
sequências dos genes da citocromo c oxidase subunidade I e citocromo b. A 
análise do cariótipo foi realizada com coloração convencional e hibridização 
in situ por fluorescência (FISH). O cariótipo é composto por 48 cromossomos 
metacêntricos/submetacêntricos e 6 subtelocêntricos/acrocêntricos, mantendo 
o número diploide (2n = 54) considerado ancestral na família Loricariidae, 
embora incomum em Hypostominae. Não foram observadas diferenças entre 
os cariótipos de fêmeas e machos, sugerindo ausência de cromossomos sexuais 
heteromórficos. Sequências teloméricas intersticiais (ITSs) tênues foram 
detectadas em um par submetacêntrico, cuja origem permanece incerta, podendo 
representar remanescentes de translocações decorrentes de mecanismos de reparo 
do DNA ou de DNA satélite. Os loci de rDNA 18S e 5S estão localizados em 
cromossomos distintos (pares 11 e 6, respectivamente), divergindo da sintenia 
plesiomórfica observada em Loricariidae. Esse padrão pode refletir tanto a 
história evolutiva quanto os efeitos de pressões ecológicas. Assim, análises 
comparativas com outras espécies do gênero Chaetostoma são essenciais para 
determinar se essas características cariotípicas refletem a posição filogenética 
ou processos adaptativos específicos, considerando que este estudo representa a 
primeira caracterização para o gênero.

Palavras-chave: Cascudos narigudos, Cromossomos, Filogenética, Fish, Genes 
ribossômicos.

INTRODUCTION

Loricariidae, commonly known as armored catfishes, represents a large family of 
freshwater fishes distributed across South and Central America. They are distinguished 
by their bony plates and suckermouths, which are specially adapted for feeding in 
fast-flowing, rheophilic environments (Covain, Fisch-Muller, 2007; Bressman et al., 
2020). These fishes play a crucial ecological role, acting as specialized herbivores and 
consumers of organic matter. By controlling algae overgrowth, they help maintain 
the environmental balance within their habitats. Some Loricariidae species have been 
introduced into non-native freshwater ecosystems due to their popularity in the 
aquarium trade, where they can have negative impacts (Nico, Martin, 2001; Owsley et 
al., 2017; Orfinger, Goodding, 2018; Borzone Mas et al., 2019; Quintana et al., 2023). 
There are currently 1068 valid species within the Loricariidae, which is divided into six 
subfamilies: Lithogeninae, Delturinae, Rhinelepinae, Loricariinae, Hypoptopomatinae, 
and Hypostominae (Fricke et al., 2025). Hypostominae is the largest subfamily and 
comprises different tribes/clades whose relationships are still debated (Armbruster, 
2004; Lujan et al., 2015a; Roxo et al., 2019). Hypostominae exhibited significant 
diversity in chromosome numbers and in the presence of differentiated sex chromosome 
systems (Fig. S1), although this variation is not uniformly distributed across tribes and 
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genera (Sassi et al., 2024). Whitin Hypostominae, fishes of the genus Chaetostoma 
Tschudi 1846, generally attributed to the tribe Ancistrini and commonly known as 
rubbernose plecos, are described as the “Chatestoma clade” (Lujan et al., 2015a). This 
informal clade is sister of all other Hypostominae. Beyond species of Chaetostoma it 
contains a monophyletic sister taxon composed of species of Cordylancistrus Isbrücker, 
1980, Dolichancistrus Isbrücker, 1980, and Leptoancistrus Meek & Hildebrand, 1916, 
distributed primarily in the northern Andes (Lujan et al., 2015b). Chaetostoma includes 
about 47 species, although its real diversity is likely underestimated (Lujan et al., 2015b) 
as demonstrated by recent identification and descriptions of new species (Urbano-
Bonilla, Ballen, 2021; Meza-Vargas et al., 2022). These fishes are distributed along the 
Atlantic and Pacific slopes of the Andes Mountains, spanning from Panama to southern 
Peru, as well as in the Coastal Mountains of Venezuela, and various drainages within 
the Guiana and Brazilian shields (Lujan et al., 2015b). 

As is the case with the ichthyofauna inhabiting streams and rivers of Andean 
Piedmont, Chaetostoma is threatened by the hydroelectric development (Finer, Jenkins, 
2012). As a result, their preservation and conservation, together with their habitats, 
are of utmost importance to safeguard the ecological balance and maintain the rich 
biodiversity in these imperiled aquatic environments. According to the International 
Union for Conservation of Nature (IUCN), 15 Chaetostoma species are threatened of 
extinction. Of these, eight are designated as Endangered (EN) and seven as Vulnerable 
(VU) (IUCN, 2024).

Chaetostoma bifurcum Lujan, Meza-Vargas, Astudillo-Clavijo, Barriga Salazar & 
López-Fernández, 2015 (Fig. 1) is found in the Pacific Coast drainages of western 
Ecuador and northwestern Peru in piedmont elevations ranging from approximately 
100 to 650 meters above sea level. Its distribution includes the Esmeraldas, Guayas, 
Santa Rosa, and Tumbes River drainages, from north to south (Lujan et al., 2015a). 
Unfortunately, the country’s aquatic ecosystems in this area are seriously threatened 
and circumstances are deteriorating (Aguirre et al., 2021). The species has not been 
evaluated by the IUCN and is unexplored in many biological and genetic aspects. In 
addition, there is no available data on any Chaetostoma species among the about 300 
records (142 species) on chromosomal data for Hypostominae subfamily. Here we 
report the first cytogenetic data on C. bifurcum. Our objective is to ascertain whether 
chromosome number and karyotype structure exhibit the ancestral traits of the family/
subfamily or, conversely, exhibit chromosomal rearrangements, as well as to investigate 
the presence of heteromorphic sex chromosomes in this species. 

https://www.ni.bio.br/
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FIGURE 1 | Chaetostoma bifurcum: dorsal (top), lateral (middle), and ventral (bottom) views. The bony 

plates covering the body and the distinct suckermouth, characteristic of the genus Chaetostoma, are 

visible, illustrating the adaptations of the species for adhering to rocky substrates in fast-flowing 

rivers. Scale bar = 10 mm.
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MATERIAL AND METHODS

Specimen collection. Twenty-four individuals of Chaetostoma bifurcum (9 males, 
11 females, and 4 undetermined) were collected using a seine net in the Dos Bocas 
River (Cantón Pasaje), Ecuador. Fish were transported in sealed plastic bags, with the 
upper two-thirds of each bag filled with pure oxygen, ensuring optimal well-being to 
the Laboratories of Universidad Técnica de Machala until processing. The specimens 
were preliminarily identified based on external morphology (Lujan et al., 2015b) 
(Fig. 1), and this attribution was later validated on a subset of 11 specimens through 
molecular analysis. Sex determination was performed during dissection; sexually 
mature individuals could be reliably sexed based on gonadal morphology, whereas 
immature individuals were recorded as undetermined. Voucher specimens were fixed 
in a 10% formalin solution and deposited in the collection of the Instituto Nacional de 
Biodiversidad de Ecuador, under catalogue number MECN-DP 4962 (Tab. S2).

Specimen molecular identification. DNA extraction and polymerase chain reaction 
(PCR) amplification followed the procedures reported in Nirchio et al. (2023) using the 
Fish F1 and Fish R1 for cytochrome c oxidase I, COI (Ward et al., 2005) and cytbFa 
and cytbRa for cytochrome b, Cytb (Lujan et al., 2015a). Amplicons were purified and 
sequenced (Sanger method) using an external service (www.microsynth.ch). Sequences 
were aligned using Clustal X (Thompson et al., 2002), and the Basic Local Alignment 
Search Tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to explore for Cytb and 
COI sequence similarity on the GenBank database and the Identification Request for 
COI sequences in BOLD System (https://v3.boldsystems.org).

Cytogenetic Analysis. Mitotic chromosome preparations were performed according 
to Nirchio et al. (2023). Chromosome were stained with Giemsa for morphology 
and the karyotype analysis. Metacentric (m) or submetacentric (sm) chromosomes 
were classified as bi-armed, and subtelocentric (st) or acrocentric (a) chromosomes as 
uniarmed (Levan et al., 1964). The C-banding procedure (Sumner, 1972) was applied 
for heterochromatin visualization; the silver staining method (Howell, Black, 1980) 
was used to identify nucleolus organizer regions (NORs).

Fluorescence in situ hybridization experiments. Genomic DNA from 
Chaetostoma bifurcum samples was isolated from the fin tissue preserved in 95% 
ethanol with the Wizard Genomic DNA Purification Kit (Promega), according to the 
manufacturer’s instructions. Subsequently, DNA was amplified via PCR using specific 
primers corresponding to the 5S rDNA (Pendas et al., 1995), 18S rDNA (Utsunomia 
et al., 2016), and telomeric probe (Ijdo et al., 1991). Using the nick-translation protocol 
( Jena Bioscience, Germany), the 5S rDNA and telomeric PCR-amplified sequences 
were labeled with Atto-550-dUTP and the 18S rDNA with Atto-425-dUTP. The 
FISH experiments followed the conditions described in Nirchio et al. (2023). To 
validate the results of in situ hybridization, at least 30 metaphase spreads were examined. 
Metaphases were captured in an Axioplan II fluorescence microscope (Carl Zeiss Jena 
GmbH, Germany) with the ISIS software (MetaSystems, Silver Spring, MD, USA).

https://www.ni.bio.br/
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RESULTS

Molecular identification of specimens. COI sequences of 650 base pair (bp) 
corresponding to a single haplotype were obtained and deposited in GenBank 
(OR237843) (Nirchio et al., 2023). BLAST search (September 27, 2024) identified 
98.45% similarity with Chaetostoma bifurcum, and similarity < 96% with several C. 
fisheri. In the BOLD System (accessed on September 27, 2024) there were no available 
sequences of C. bifurcum yet, and the highest similarity percentage was observed with 
C. fisheri. Cytb sequences (complete sequence, 1048 bp, a single haplotype. PV030915) 
confirmed species attribution and results of COI (99.7–99.5% similarity with C. 
bifurcum and < 96% with other congeneric species).

Cytogenetic analyses. Both males and females of Chaetostoma bifurcum possess a 
diploid complement of 54 chromosomes, with a karyotype composed of 48 m-sm + 6  
st-a, and a fundamental number (FN) of 102 (Fig. 2). Silver nitrate impregnation revealed 
a unique pair of transcriptionally active nucleolus organizer regions (NORs), present 
at a distinct secondary constriction located on the short arm of the submetacentric 
pair 11 (Fig. 2A, boxed). C-banding revealed blocks of constitutive heterochromatin 
in all chromosomes, located in the centromeric and pericentromeric regions (Fig. 
2B). A distinct heterochromatic block was consistently observed on the short arm of 
chromosome pair 3. No differences were found between males and females concerning 
their heterochromatin distribution.

FIGURE 2 | Karyotype of Chaetostoma bifurcum stained with Giemsa (A), and after C-banding (B). The 

chromosome pair showing the nucleolus organizer region, after silver staining, is shown in the inset. 

m-sm, metacentric or submetacentric chromosomes; st-a subtelocentric or acrocentric chromosomes. 

Scale bar = 10 μm.

https://www.ni.bio.br/
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The fluorescence in situ hybridization (FISH) assay using the 18S rDNA probe 
confirmed the existence of a single large ribosomal cluster within the secondary 
constriction of the m-sm pair 11 (Fig. 3), which coincides with the NOR region. 
Moreover, the 5S rDNA probe revealed the presence of the minor ribosomal cistrons 
interstitially on the short arms of a middle-sized m-sm chromosome, likely pair 6. 
FISH with a telomeric probe shows positive signals in the terminal region of all 
chromosomes; in addition, a small interstitial telomeric sequence (ITS) was observed 
on a submetacentric chromosome pair (Fig. 4). No differences were recorded for any 
cytogenetic markers, between females and males.

FIGURE 3 | Chaetostoma bifurcum karyotype after double fluorescence in situ hybridization with 18S rDNA (green) and 5S rDNA (red) probes. 

Box highlights the labeled pairs and their aspect in DAPI. Scale bar = 10 μm.

FIGURE 4 | Chaetostoma bifurcum karyotype after fluorescence in situ hybridization using telomeric probes TTAGGGn. Faint ITSs are visible 

on chromosome pair number 2. Scale bar = 10 μm.

https://www.ni.bio.br/
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DISCUSSION

Integrating molecular and cytogenetic approaches in teleost research has proven to 
be instrumental in uncovering the mechanisms underlying karyotype diversity 
and evolutionary pathways. These methodologies provide a framework to explore 
how genetic and evolutionary factors influence chromosomal rearrangements and 
diversification of species (Nirchio et al., 2014; Martinez et al., 2015; Supiwong et al., 2019; 
Moraes et al., 2021). In this study, we present the first cytogenetic data for Chaetostoma 
bifurcum, extending the number of Hypostominae species/genera analyzed. While our 
study focuses primarily on karyotypic patterns and their evolutionary implications, it 
sets the stage for future research aimed at exploring potential ecological correlates of 
karyotypic diversity within this group.

In Hypostominae, chromosome number ranges from 2n = 34 to 2n = 82 (Fig. 
S1). The tribes within the subfamily are not uniformly represented regarding species 
diversity, available research, or chromosome number (Fig. S3). For instance, the tribe 
Ancistrini is one of the two most studied, with 126 records spanning 16 genera, while 
Hypostomini includes 158 records from just two genera (Aphanotorulus Isbrücker & 
Nijssen, 1983 and Hypostomus Lacepède, 1803). In contrast, Pterygoplichthini includes 
13 records for the single genus, Pterygoplichthys Gill, 1858. The broad chromosome 
number range in Hypostominae is largely driven by two genera: Ancistrus Kner, 1854, 
with 2n ranging from 34 to 54 chromosomes (2n = 52 being the most common) and 
Hypostomus with 2n ranging from 66 to 82 (2n = 72 being the most common). Other 
genera and species, regardless of their tribe, typically share 2n = 52–54 chromosomes. 
This suggests that chromosome changes in the subfamily have not occurred uniformly 
during the evolutionary diversification of its genera (Cereali et al., 2008; Mariotto et 
al., 2011). In this context, although the phylogeny of Chaetostoma remains debated 
(Armbruster, 2004; Lujan et al., 2015a; Roxo et al., 2019) the genus is sister to all 
remaining Hypostominae, and the cytogenetic features of C. bifurcum are consistent 
with this interpretation. The species retains the ancestral diploid number proposed for 
Loricariidae (2n = 54) (Artoni, Bertollo, 2001), although this is not the most frequent 
chromosome number observed within Hypostominae (reviewed in Sassi et al., 2024). 
Further analyses of other Chaetostoma species within the genus are needed to determine 
whether this chromosome number is a general characteristic of the genus or a specific trait 
of C. bifurcum. Regarding sex chromosomes, none were detected in C. bifurcum, which 
is not unexpected given the apparent randomness of sex chromosome differentiation 
across Hypostominae even among closely related species (Glugoski et al., 2020).

Regarding the heterochromatin distribution, a conspicuous block was consistently 
observed on the short arm of chromosome pair 3. This block, clearly visible under 
conventional C-banding, may represent a species-specific cytogenetic feature. In other 
Ancistrini, extensive heterochromatic blocks have been linked to the accumulation of 
microsatellite repeats, such as (AC)₁₅ and (GT)₁₅, which are often interspersed within 
or adjacent to heterochromatic regions (Takagui et al., 2025). Moreover, certain 
microsatellites have been shown to interact with other repetitive DNA elements, 
such as rDNA sites, contributing to the establishment of evolutionary breakpoint 
regions that favor chromosomal rearrangements (Glugoski et al., 2018; Deon et al., 
2022). Thus, we might hypothesize that the block observed in C. bifurcum reflects a 
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preferential accumulation of microsatellites in that region. This hypothesis warrants 
further investigation through the physical mapping of specific microsatellite motifs on 
the karyotype of this species.

Different mechanisms may explain the presence of the ITSs, detected in C. bifurcum, 
which are absent in other Hypostominae: (a) ITSs are often interpreted as remnants of 
chromosomal rearrangements such as fusions or inversions (Ocalewicz, 2013). In C. 
bifurcum, where the diploid number (2n = 54) is the highest reported within Ancistrini, 
a fusion origin can be reasonably excluded, as fusions typically lead to a reduction 
in chromosome number. However, chromosomal inversions, which do not alter the 
chromosome count, remain a plausible explanation. (b) Another possible mechanism 
involves the generation of interstitial telomeric repeats through DNA repair processes. 
Comparative analyses of vertebrate genomes have shown that these sequences can arise 
independently of chromosomal rearrangements, as part of double-strand break repair 
pathways (Faravelli et al., 2002; Teixeira et al., 2016; Sola et al., 2021). This mechanism 
could account for the random presence of ITSs across closely related species, and thus 
be compatible with the absence of ITSs in other Ancistrini. (c) An additional source of 
ITSs are chromosomal rearrangements mediated by satellite DNA (Garrido-Ramos et 
al., 1998), although no information is currently available on the satellite DNA content 
of C. bifurcum, limiting the evaluation of this hypothesis. Although the ITS signal 
observed in C. bifurcum is relatively strong, even stronger than telomeric signals in the 
terminal regions of other chromosomes, its evolutionary and functional significance 
remains speculative. It is also possible that in related species, the absence of detectable 
ITSs results from technical limitations in identifying short interstitial sequences (Lund 
et al., 2009; Downs et al., 2012). Together, these findings emphasize the need for 
further comparative cytogenetic and genomic studies to better understand the origin 
and relevance of these chromosomal features.

Finally, we reflect on the rDNA localization pattern, which has long been 
recognized as a significant cytotaxonomic marker (Venere et al., 2008). Chaetostoma 
bifurcum possesses a single chromosome pair bearing 18S rDNA, a feature observed in 
the vast majority of Hypostominae, Loricariidae, and other teleost groups (Gornung, 
2013), along with a single 5S rDNA site located on a different chromosome. This 
arrangement deviates from the plesiomorphic syntenic condition proposed for 
Loricariidae (Ziemniczak et al., 2012) but aligns with a more derived condition 
observed in Hypostominae, where 18S and 5S rDNA loci are commonly located on 
distinct chromosomes. On the other hand, rDNA positioning is also influenced by 
NOR-associated heterochromatin remodeling, which can drive interchromosomal 
exchange (Gornung, 2013). This indicates that rDNA mapping does not simply reflect 
lineage history but may also be shaped by additional factors. For example, differences in 
rDNA localization may arise from adaptation to environmental conditions (Silva et al., 
2019), allowing species to optimize protein synthesis in response to ecological pressures 
(Cayuela et al., 2020), or by regulating rRNA and ribosome production (Kenmochi et 
al., 2001; Symonová, 2019; Hori et al., 2023). Furthermore, the adaptive potential of 
rDNA extends to others, extra ribosomal, functions: it may act as an early indicator of 
genomic instability or stress (Salim, Gerton, 2019). Therefore, the rDNA localization 
pattern observed in C. bifurcum likely results from both evolutionary divergence and 
local adaptive responses.

https://www.ni.bio.br/
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Since Arai’s (2011) comprehensive compilation, the number of karyotyped fish 
species has significantly increased, reflecting the growing application of cytogenetics 
in ichthyological research. This expansion has not only enhanced our understanding 
of chromosomal evolution across diverse lineages but has also proven instrumental in 
identifying cryptic species and uncovering hidden biodiversity (Cioffi et al., 2018). 
These advances underscore the continued significance of cytogenetic research 
in reconciling molecular and morphological methodologies, providing a more 
comprehensive understanding of the evolutionary history of teleost fishes.
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