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The tarpon (Megalops atlanticus) is a species of ecological and economic 
importance that uses estuaries as nursery grounds during its early life stages. 
Currently classified as Vulnerable (VU) by the IUCN due to anthropogenic 
pressures, understanding its trophic ecology is crucial to monitoring 
environmental changes and fish-habitat interactions. This study examined the 
diet of juvenile M. atlanticus in a highly urbanized estuary, using morphological 
and molecular (16S rDNA) analyses, comparing diets across different size classes 
and assessing the consumption of non-native species. The stomach contents 
of 123 individuals (3.9–64.0 cm standard length) were analyzed. Results show 
that M. atlanticus is a generalist and opportunistic, consuming invertebrates as 
well as native and non-native fish species, including Oreochromis niloticus. The 
presence of Tubifex spp. and evidence of cannibalism indicate dietary plasticity in 
response to altered environments. The DNA-based approach allowed for more 
accurate prey identification, reinforcing that the diet of juveniles is shaped by 
the presence of non-native species, which are common in habitats modified by 
human activities. These findings highlight the impact of anthropogenic actions 
on trophic dynamics in estuaries and emphasize the essential role of these habitats 
as nursery grounds for tarpon.
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O camurupim (Megalops atlanticus) é uma espécie de grande importância 
ecológica e econômica, que utiliza os estuários como berçários durante estágios 
iniciais de vida. Devido às pressões antrópicas, atualmente está classificado como 
Vulnerável (VU) pela IUCN. Compreender sua ecologia trófica é fundamental 
para monitorar mudanças ambientais e interações entre os peixes e o ambiente. 
Este estudo examinou a dieta de juvenis de M. atlanticus em um estuário altamente 
urbanizado, utilizando análises morfológicas e moleculares (rDNA 16S), 
comparando as dietas entre diferentes classes de tamanho e avaliando o consumo 
de espécies não-nativas. O conteúdo estomacal de 123 indivíduos (3,9–64,0 cm 
de comprimento-padrão) foi analisado. Os resultados mostram que M. atlanticus 
é generalista e oportunista, alimentando-se de invertebrados e de peixes nativos 
e não-nativos, incluindo Oreochromis niloticus. A presença de Tubifex spp. e 
canibalismo indicam plasticidade alimentar em resposta a ambientes alterados. A 
abordagem com DNA permitiu identificação mais precisa das presas, reforçando 
que a dieta dos juvenis é influenciada pela presença de espécies não-nativas, 
comuns em ambientes alterados por atividades humanas. Esses achados ressaltam 
o impacto das ações antrópicas sobre dinâmicas tróficas nos estuários e destacam 
o papel essencial desses habitats como berçários para o camurupim.

Palavras-chave: DNA, Ecossistema costeiro, Ecossistema urbano, Hábitos 
alimentares, Peixe estuarino.

INTRODUCTION

Estuaries serve as nurseries for several fish species, providing essential shelter and food, 
particularly during their early life stages (Able et al., 2010; Favero et al., 2019). Estuarine 
fishes are embedded within complex trophic networks, playing a crucial role in the 
energy transfer between trophic levels and with other ecosystems as they move across 
different habitats throughout ontogeny (Potter et al., 2011). However, environmental 
changes and anthropogenic pressures affect the water quality and the biodiversity of 
these ecosystems (Halpern et al., 2008; Borja et al., 2010; Merigot et al., 2017; Pinto et al., 
2025), which influence the dietary characteristics of fish species (Speranza et al., 2020). 
The increase in pollutants and the introduction of invasive species lead to changes in the 
diets of fish populations across time and space (Barker et al., 2014; Speranza et al., 2020; 
Rosa et al., 2021; Griffin et al., 2023). Therefore, studying trophic ecology is crucial 
for environmental monitoring and ecosystem management in polluted and unpolluted 
habitats, as it helps to understand the flow of energy and nutrients, ecosystem health, 
and biodiversity. In polluted habitats, trophic studies become even more critical, as 
pollution can disrupt these interactions and affect the food web (Costa, Angelini, 2020).

Various techniques are employed to identify the stomach contents of fish. The 
identification of prey in fish diets, using both morphological and molecular methods, 
provides crucial data for the development of effective conservation and management 
strategies (Nielsen et al., 2017; Buckup, 2021; Boza et al., 2022). Traditional methods 
involve examining stomach contents for items, such as bones, scales, and otoliths (Zavala-
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Camin, 1996; Nielsen et al., 2017). However, visual analysis can be challenging due to 
prey degradation during digestion (Barrett et al., 2007; Teletchea, 2009; Bowen, Iverson, 
2012). Recent advances in fish diet studies include DNA analysis, organic macromolecule 
assessments, and stable isotope evaluations (Nielsen et al., 2017; Boza et al., 2022).

DNA analysis offers high sensitivity and specificity in detecting and identifying 
consumed prey, providing advantages over the commonly used visual identification 
methods in predation studies. These advantages include the ability to detect highly digested 
prey, identify taxa at finer taxonomic levels, standardize methodologies, verify results 
through sequencing, and analyze large sample sets using high-throughput techniques 
(Traugott et al., 2021). These features enhance the accuracy of identifying native and 
non-native species in fish diets, which contributes to understanding their ecological 
impacts (Baharum, Nurdalila, 2012; Saad, 2019; Herlevi et al., 2023). For instance, studies 
performed by Brandl et al. (2015), Jungbluth et al. (2021), and Boza et al. (2022) utilized 
DNA analysis techniques to accurately identify the species consumed in fish diets and 
demonstrate how this approach can reveal changes in trophic interactions. Furthermore, 
Sousa et al. (2019) illustrate how DNA analysis is an excellent tool for assessing how 
human-induced changes, such as urbanization, agriculture, and climate change, are 
affecting the feeding behaviors of various species, both terrestrial and aquatic.

The Megalops atlanticus Valenciennes 1847, known as Tarpon, is a diadromous fish with 
a long-life cycle, slow growth, late sexual maturity, and a leptocephalus larval stage (Silva 
et al., 2021; Fernandes et al., 2023). This species is classified as globally Vulnerable (VU) by 
the International Union for Conservation of Nature (IUCN), and also listed as Vulnerable 
in the Brazil Red List of Threatened Species of Fauna (Adams et al., 2019; Brasil, 2022), 
due to anthropogenic pressures such as overexploitation, the use of inadequate fishing 
gear, habitat degradation or loss, and aquatic pollution (Batista et al., 2020).

The Tarpon inhabits tropical, subtropical, and temperate regions of the western 
Atlantic Ocean, from Canada to northern Argentina (Fricke et al., 2025), limited by its 
sensitivity to low temperatures (Mace et al., 2020). It is an adaptable species that utilizes 
a variety of habitats throughout its life cycle. However, the upper zones of estuaries 
play a crucial role as nurseries for juvenile tarpons (Kurth et al., 2019). In Brazil, Tarpon 
is mainly captured in the North and Northeast regions, where it is important for both 
consumption and trade, as well as for traditional communities, who use its scales for 
handicrafts (Batista et al., 2020). In North America, this species is especially valued for 
sport fishing (Cianciotto et al., 2019; Batista et al., 2020).

The Tarpon is a generalist, with a diet primarily composed of fish and invertebrates 
(Jud et al., 2011). It is a highly mobile predator that utilizes different habitats and resources 
throughout its life cycle, foraging on a wide variety of organisms (Menezes, Menezes, 
1968; Jud et al., 2011). The availability of food resources is a significant factor that 
influences the abundance and distribution of this species in estuarine habitats (Imre et al., 
2004). However, limited knowledge exists regarding the feeding and habitat preferences 
of this species in these ecosystems (Collen et al., 2008; Adams et al., 2014; Wilson et 
al., 2019), and the patterns of its trophic ecology in tropical estuaries remain poorly 
understood (Jud et al., 2011; Cianciotto et al., 2019; Kurth et al., 2019). Anthropogenic 
alterations of recruitment environments also impact the feeding and habitat preferences 
of this species. Jud et al. (2011) demonstrated an increasing dependence of juvenile 
tarpons on anthropogenically modified estuarine environments, while Rosa et al. (2021) 
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highlighted the significant impact of non-native species on the trophic network. It is 
suggested that anthropogenically altered estuaries provide favorable conditions for the 
feeding and growth of juveniles M. atlanticus.

Therefore, we aimed to understand how dietary factors may influence the occurrence 
of juvenile Megalops atlanticus in an urbanized and polluted estuary located in the semiarid 
region of Northeast Brazil. Our study was based on the ecological premise that diet 
reflects environmental prey availability and that ontogenetic changes in body size can 
influence feeding patterns. We tested two main hypotheses: (1) the diet of juvenile M. 
atlanticus is primarily composed of non-native fish species, and (2) dietary composition 
varies with body size, with larger individuals expected to consume a broader diversity of 
prey or larger prey items. To test these hypotheses, we analyzed the feeding ecology of 
M. atlanticus by identifying stomach contents through morphological characteristics and 
DNA barcoding techniques, comparing diet across different size classes, and classifying 
prey items as native or non-native.

MATERIAL AND METHODS

Study area. The Cocó estuary is located within the Parque Estadual do Cocó (PEC) 
Conservation Unit, in Fortaleza municipality, Ceará, in northeastern Brazil, between the 
coordinates 03°46’23.7”S 38°26’12.2”W and 03°45’43.3”S 38°30’14.0”W (Fig. 1). The 
estuary is situated in a densely urbanized area, particularly susceptible to management 
changes, such as increased discharges of domestic and industrial effluents along the 
river (Schettini et al., 2017). The climate in this region is characterized by a short and 
irregular rainy season, followed by a prolonged dry season, with an average annual 
precipitation of less than 800 mm and an average annual temperature of around 26°C. 
This affects the seasonal salinity dynamics in the estuaries, leading to hypersalinity in the 
upper estuarine zones (Barroso et al., 2016; Schettini et al., 2017; Gurgel-Lourenço et 
al., 2023). However, the Cocó estuary presents a typical saline gradient, with decreasing 
salinity upstream and freshwater conditions in the middle and upper zones throughout 
the year (SEMA, 2020).

The Cocó estuary is approximately 13 km long and stands out due to the magnitude 
and frequency of disturbances (Freires et al., 2013), in addition to hosting the largest 
population of M. atlanticus among regional estuaries (Gurgel-Lourenço et al., 2023). The 
main sources of pollution are associated with urban development, shoreline occupation, 
and untreated heavy metals, as well as the introduction of non-native species, such as 
Betta splendens Regan, 1910, Poecilia reticulata Peters, 1859, P. sphenops Valenciennes, 
1846, and Oreochromis niloticus (Linnaeus, 1758) (Silva et al., 2004; SEMACE, 2010; 
Duaví et al., 2015; Gurgel-Lourenço et al., 2023; Pinto et al., 2025). Additionally, the 
estuary exhibits high concentrations of nitrogen and phosphorus of anthropogenic 
origin, exceeding natural sources and promoting the proliferation of macrophytes, 
especially in the middle and upper zones (Barroso et al., 2016).

Biotic and abiotic characterization. The characteristics of the estuarine zones, 
particularly the physical and chemical parameters of the water, exhibit variations 
throughout the estuary (Lima et al., 2019), which may be related to habitat selection 
and prey consumption by the juvenile M. atlanticus. To characterize the environment, 
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we recorded the presence and absence of macrophytes in the estuary and measured the 
river’s width and depth using a tape measure and a depth stick (Tab. 1). Furthermore, 
we assessed temperature (°C), salinity, dissolved oxygen (mg/L) and transparency (cm) 
using, respectively, a thermometer, refractometer, oxygen meter, and Secchi disk.

Sampling. A total of 123 specimens of M. atlanticus were collected during the periods 
of 2017–2018 and 2022–2023. In the first period, 52 individuals were collected, with 
most captured in May 2017 (n = 23), June 2017 (n = 15) and November 2017 (n = 2), and 
only six in 2018, primarily in January (n = 4), and May (n = 2). In the second period, 71 
individuals were collected, including 34 in 2022, with the majority captured in June (n 
= 24), and 37 in 2023, mostly in January (n = 35).

Smaller individuals were captured by cast nets (6 m2 and 10 m2) and a seine net 
(200 m2) under license 57780, issued by Instituto Chico Mendes de Conservação da 
Biodiversidade (ICMBio)/Biodiversity Authorization and Information System (SISBio). 
Larger individuals were captured at the same locations using nine gillnets with areas 
ranging from 9.2 m2 to 60 m2 and mesh sizes of 60, 70, and 100 mm between opposite 
knots for three hours (9:00 AM to 12:00 PM) under the ICMBio/SISBio license 77988. 
All the collections were carried out during the ebb tide (2.0 to 0.0) and the flood tide 
(0.0 to 2.0). The voucher specimen (UFRN 4850) was deposited in the fish collection of 
the Laboratory of Systematic and Evolutionary Ichthyology, Universidade Federal do 
Rio Grande do Norte (Natal, RN), Brazil.

FIGURE 1 | Location of the Cocó estuary in the State of Ceará, northeastern Brazil, showing (A) the position of Brazil in South America, (B) the 

regional location of the Cocó estuary, and (C) the ichthyofauna sampling points and zones defined in this study.
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The collected fish were measured for standard length (SL) (cm) using a caliper (0.1 
mm) and eviscerated to remove the stomach contents. Additionally, all individuals were 
classified as immature juveniles based on macroscopic observation of the gonads, following 
the criteria of Brown-Peterson et al. (2011). The stomach contents were preserved in 70% 
ethanol, stored, and identified through morphological and molecular analysis.

Food items morphological identification. The morphological identification 
of consumed prey was carried out on Petri dishes with graph paper, under a 
stereomicroscope using taxonomic keys, species lists, photographs, scientific articles, 
and fish guides, which allowed the identification of the lowest possible taxonomic level 
(Menezes, Menezes, 1968; Figueiredo, Menezes, 2000; Pezold, Cage, 2002; Araújo et 
al., 2004; Marceniuk, 2005; Fischer et al., 2011; Nelson et al., 2016; Buckup, 2021; Sabaj 
et al., 2022; Botero et al., 2023; Gurgel-Lourenço et al., 2023; Kwun, Kang, 2023). 
Additionally, specimens were compared with those available in the collection of the 
Laboratório de Ecologia Aquática e Conservação from the Universidade Federal do 
Ceará (LEAC-UFC). The analysis included morphological characteristics, such as scale 
type, body shape, fins, and skeletal structures (Fischer et al., 2011; Buckup, 2021).

Genetic analysis: extraction, amplification, purification, sequencing, and 
identification of genetic material. For molecular identification of the fish species in 
the stomach contents, regions with a lower degree of degradation were selected (Aguilar 
et al., 2017). The next step was to extract a fragment of muscle tissue approximately 25 
mm2 in size (or smaller, in cases of more degraded samples) using a sanitized graph 
paper, scalpel, and Petri dish. Two different protocols were used for DNA extraction 
due to the difficulty of extracting genetic material from the samples.

The first protocol was based on the CTAB 2X method (Warner, 1996) with 
modifications. In this protocol, the samples were incubated at 60°C in CTAB 2X 
solution. The second method was adapted from Robles et al. (2007) and used samples 
from the stomach content, which were properly washed with ultrapure water and 
centrifuged for 1 minute at 3.000 x g, the step was repeated three times. The samples 
were then resuspended in 600 µL of 1% Sodium Dodecyl Sulfate (SDS) with 10 µL of 
proteinase K, incubated at 65°C for 3 h. Following this, 200 µL of 7.5 M ammonium 
acetate was added, and the samples were centrifuged (12,000 x g, 30 min). A total of 700 
µL of the supernatant was transferred to 600 µL of isopropanol and incubated at -20°C 
for 10 min. The samples were then centrifuged at 12.000 x g (4°C), and the pellet was 
washed with 70% ethanol and evaporated at 37°C.

TABLE 1 | Characterization of the estuarine zones based on width, depth, and vegetation in the Cocó 

estuary.

Estuarine zone Width (m) Depth (m) Vegetation

Upper 16.61 1.82
Medium-sized shrubs and trees, and the presence of 
macrophytes

Middle 30.61 1.91
Avicennia germinans (L.) (Black mangrove) in predominance 
and the presence of macrophytes

Lower 135.65 1.76
Rhizophora mangle L. (Red mangrove) in predominance and 
absence of macrophytes

https://www.ni.bio.br/
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The mitochondrial 16S region was amplified by Polymerase Chain Reaction (PCR) 
using primers 16 Sar (5’ CGC CTG TTT ATC AAA AAC AT 3’) and 16 Sbr (5’ CCG 
GTC TGA ACT CAG ATC ACG 3’) (Palumbi, Benzie, 1991). The PCR reactions 
were performed in a final volume of 35 µL, containing approximately 20 ng of DNA 
and PCR reagents: 0.14 mM of each dNTP; 0.7 X GoTaq buffer (Promega), 0.7 µL 
of each primer, 2 mM MgCl2, 3 mM Bovine Serum Albumin (BSA), and 1 unit of 
GoTaq polymerase chain enzyme (Promega, USA). The PCRs were carried out in a 
thermocycler (Eppendorf Mastercycler® Hamburg, Germany) programmed for an 
initial denaturation step (10’ at 94°C), followed by 44 cycles of 1’ at 94°C, 45” at 48°C, 
and 1’45’’ at 72°C. The final cycle was followed by a final extension step of 10’ at 72°C. 
The amplification products were analyzed by electrophoresis in a 1% (w/v) agarose gel 
stained with SYBR® safe DNA (Invitrogen, USA). PCR products were purified and 
precipitated using the potassium acetate and ethanol protocol.

The DNA was sequenced using the Sanger method, employing the primers 16Sar 
and 16Sbr at the Central de Genômica e Bioinformática (CeGenBio) of the Centro 
de Pesquisa e Desenvolvimento de Medicamentos (NPDM) at the Universidade 
Federal do Ceará (UFC). The sequences were edited using Codoncode Aligner v. 6.0.2 
(Codoncode Corp, USA). The identification of the fish species in the stomach contents 
was performed by comparing the sequences with those available in the National Center 
of Biotechnology Information Database (GenBank), using the Basic Local Alignment 
Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

The molecular genus-level identification of these fishes was based on the Expect 
(E) values resulting from BLAST, where sequences with lower “E” values are those 
that best match the queried sequence (Zeng et al., 2018). The identity percentage (%) 
represents how similar the query sequence is to the database sequence. The expectation 
value (E-value) describes the number of occurrences that may be found by chance, 
considering the sequence length and the size of the database. For this reason, the smaller 
the E-value, the higher the likelihood that the result is not due to random chance 
(Amaral et al., 2007). Finally, the Query cover indicates the proportion of the query 
sequence that was aligned to the target sequence in the database. Sequences with the 
highest query coverage are closest to 100%, and lower E-values (closer to zero) indicate 
maximum alignment with the target sequence (Samal et al., 2021).

Data analysis. We assessed the diet based on genetic sequencing and morphological 
analysis, using the Food Importance Index (IAi) to determine the relative importance of 
each food resource. The IAi was calculated by combining the frequency of occurrence 
(FOi) and volumetric (Vi) methods according to the equation proposed by Kawakami, 
Vazzoler (1980): IAi = (FOi × Vi) × 100 / ∑ (FOi × Vi), where i represents each food 
item, FOi is the frequency of occurrence (%) of item i, and Vi is the volume (%) of item 
i. The volume of food items was estimated in cubic millimeters (mm³) by multiplying 
the area (mm²) occupied by each item on graph paper by its height (mm), measured 
with a caliper. The IAi values range from zero to one (0 ≤ IAi ≤ 1) and are subsequently 
converted into percentages, referred to as IAi-% (Teixeira, Gurgel, 2002).

The graphical method was applied to distinguish rare from dominant prey and to 
synthesize the information from the items found in the stomachs (Amundsen et al., 
1996). This method correlates the specific abundance of prey with its frequency of 
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occurrence through a two-dimensional plot. Mathematically, this is represented as: (Pi 
= ∑Si / ∑Sti × 100), where Pi represents the specific abundance of prey i, Si is the 
total volume of prey i, and Sti is the total stomach content for specimens that contain 
prey i in their stomachs. In this perspective, the IAi% is used to represent the specific 
abundance of prey and FO for the frequency of occurrence of prey in the stomachs. 
Information about prey relevance and M. atlanticus feeding strategy was derived by 
analyzing the distribution of points along the diagonals and axes of the diagram proposed 
by Amundsen et al. (1996). This diagram allows for the identification of whether the 
predator consumes dominant or rare prey and evaluates its feeding strategy, classifying 
it as either a specialist or a generalist. 

To assess ontogenetic variation in the diet, length classes were defined based on 
Sturges guidelines (Vieira, 1980), resulting in four length classes with intervals of 15 
cm: (I) lower than 15 cm, (II) 15.1 to 30 cm, (III) 30.1 to 45 cm, and (IV) greater than 
45.1 cm, to visualize how consumed items are distributed among the different sizes. 
Principal Coordinates Analysis (PCoA) from a Bray-Curtis distance matrix was used 
to evaluate variation patterns in the species’ diet. The significance of the size effect on 
diet composition was tested using the envfit function from the vegan package (Oksanen 
et al., 2019). All analyses and data visualizations were performed using R software (R 
Development Core Team, 2024).

RESULTS

The highest values for temperature (29.3 ± 0.5°C) and dissolved oxygen (6.0 ± 1.4 
mg/L) were recorded in the lower zone, while the lowest values were observed in the 
upper zone (28.2 ± 0.9°C; 2.1 ± 1.2 mg/L). Salinity was also higher in the lower zone 
(14.8 ± 6.9), as it was the transparency (110.5 ± 15.0 cm). The middle zone exhibited 
similar values for temperature, dissolved oxygen, and transparency (28.7 ± 0.8°C, 2.6 
± 1.3 mg/L, and 50 ± 9.0 cm) to those observed in the upper zone, differing primarily 
in salinity, which was zero in the upper zone and 1.8 ± 4.5 in the middle zone (Fig. 2). 

Analysis of variance for water temperature did not reveal significant differences 
between the zones (F = 1.91; p = 0.19), suggesting that temperature remained consistent 
across the upper, middle, and lower zones. In contrast, dissolved oxygen showed 
significant differences (F = 9.51; p = 0.0049), with Tukey’s post-hoc test indicating 
that the lower zone had significantly higher dissolved oxygen concentrations compared 
to the middle (p = 0.009) and upper (p = 0.004) zones, with no significant difference 
between the middle and upper zones (p = 0.79). Regarding salinity, there were significant 
differences among the zones (Kruskal-Wallis test: H = 10.08; p = 0.006), with the lower 
zone with significantly higher salinity than the middle (p = 0.02) and upper (p = 0.003) 
zones, while there was no difference between the middle and upper zones (p = 0.61) 
(Dunn’s post-hoc test). Finally, water transparency (Secchi) also showed significant 
differences among the zones (F = 45.47; p < 0.001), with the lower zone exhibiting 
greater water transparency compared to the middle (p < 0.001) and upper (p < 0.001) 
zones, and no significant difference between the middle and upper zones (p = 0.79).

https://www.ni.bio.br/
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FIGURE 2 | Characterization of temperature (°C), dissolved oxygen (mg/L), salinity, and Secchi transparency (cm) variables in the upper, 

middle, and lower zones of the Cocó estuary.

Juvenile M. atlanticus presented a standard length ranging from 3.9 to 64.0 cm, and 
the average values in the upper and middle zones were, respectively, 13.3 ± 5.0 cm and 
42.0 ± 13.0 cm. All individuals analyzed in this study are considered juveniles. According 
to Stephens et al. (2024), M. atlanticus juveniles remain in coastal nursery habitats for 
several years before migrating to coastal waters as sexually mature adults, which occurs at 
approximately 10 years of age and 120 cm in fork length. In terms of weight, individuals 
ranged from 4.6 g to 3.242 g, and the average values in the upper and middle zones were, 
respectively, 41.5 ± 40 g and 1,127.4 ± 802 g. No individuals were captured in the lower 
zone. Individuals inhabiting the middle zone were considerably larger than those in the 
upper zone (Wilcoxon rank-sum test W = 242.5; p < 0.001) (Fig. 3).

A total of 23 consumed items were identified in the diet of M. atlanticus, which 
included insect larvae and eggs, Ephemeroptera nymphs, Belostomatidae, plant material, 
crustaceans, mollusks, Tubifex spp., detritus, and plastic. The most frequent items found 
were Diptera larvae (FO = 25.33) and Tubifex spp. (FO = 24.00) (Fig. 4). Similarly, the 
relative importance estimate highlighted these same items as the most significant in 
the diet of juvenile M. atlanticus (Diptera larvae IA = 39.02 and Tubifex spp. IA = 30.99) 
(Tab. 2). From the two-dimensional plot, the most important food items in the diet of 
M. atlanticus were Diptera larvae and Tubifex spp. worms.
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FIGURE 3 | Violin plot of Megalops atlanticus size distribution (cm) in the upper and middle estuarine 

zones.

FIGURE 4 | Graphical analysis of the feeding strategy of Megalops atlanticus in the Cocó estuary. A. Relationship between specific abundance 

(IAi%) and frequency of occurrence (FO%) of prey. B. Enlargement of the lower left region of the plot. Other items: Eleotris pisonis, Bathygobius 

soporator, Engraulidae, Serrasalmus rhombeus, Syrphidae larvae, insect eggs, and debris. C. Conceptual diagram adapted from Amundsen et al. 

(1996). WPC: Each individual shows variation in its own resource use; BPC: There is variation in resource use among individuals.
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TABLE 2 | Frequency of occurrence (FOi%), average volume (Vi%), and dietary importance index (IAi%) 

of each item consumed by Megalops atlanticus in the Cocó estuary. Note: items marked with an asterisk 

correspond to fish species.

Food itemFood item FOi%FOi% Vi%Vi% IAi%IAi%

Diptera larvaeDiptera larvae 25.3325.33 23.9323.93 39.0239.02

TubifexTubifex spp. spp. 24.0024.00 20.0620.06 30.9930.99

Poeciliidae*Poeciliidae* 12.0012.00 8.678.67 6.696.69

InsectInsect 14.6714.67 5.605.60 5.295.29

Plant materialPlant material 10.6710.67 5.525.52 3.793.79

Oreochromis niloticus*Oreochromis niloticus* 9.339.33 4.984.98 2.992.99

Melanoides tuberculataMelanoides tuberculata 9.339.33 4.544.54 2.732.73

Gobiidae*Gobiidae* 6.676.67 5.125.12 2.202.20

Megalops atlanticus*Megalops atlanticus* 5.335.33 4.444.44 1.521.52

Myrophis punctatus*Myrophis punctatus* 5.335.33 4.214.21 1.441.44

Moenkhausia costae*Moenkhausia costae* 5.335.33 3.833.83 1.311.31

Vitta meleagrisVitta meleagris 5.335.33 2.032.03 0.700.70

CrustaceaCrustacea 2.672.67 2.632.63 0.450.45

Ephemeroptera nymphEphemeroptera nymph 5.335.33 1.171.17 0.400.40

PlasticPlastic 2.672.67 1.181.18 0.200.20

Eleotris pisonis*Eleotris pisonis* 1.331.33 1.331.33 0.110.11

BelostomatidaeBelostomatidae 2.672.67 0.350.35 0.060.06

Bathygobius soporator*Bathygobius soporator* 1.331.33 0.360.36 0.030.03

Engraulidae*Engraulidae* 1.331.33 0.240.24 0.020.02

Serrasalmus rhombeus*Serrasalmus rhombeus* 1.331.33 0.220.22 0.020.02

Syrphidae larvaeSyrphidae larvae 1.331.33 0.160.16 0.010.01

DebrisDebris 1.331.33 0.100.10 0.010.01

Insect eggInsect egg 1.331.33 0.070.07 0.010.01

A total of 33 fish samples, either fully or partially digested, found in the stomachs of M. 
atlanticus were genetically evaluated. Eleven of these samples were successfully sequenced, 
being identified as Bathygobius soporator (Valenciennes, 1837), Megalops atlanticus, 
Moenkhausia costae (Steindachner, 1907), Myrophis punctatus Lütken, 1852, Oreochromis 
niloticus (Linnaeus, 1758), and Serrasalmus rhombeus (Linnaeus, 1766) (Tab. 3).

The PCoA revealed three distinct groups based on the predominance of the following 
items in the diet: eggs and larvae, Naididae (Tubifex spp.), and Teleostei. A permutation 
test using the envfit function indicated a significant effect between fish size and diet 
composition (p = 0.001). Smaller individuals (< 15 cm) primarily consumed eggs and 
larvae, whereas larger individuals preferred Naididae or Teleostei (Fig. 5).

Smaller individuals of Tarpon (< 15 cm) exhibited a less diverse diet, with an emphasis 
on Diptera larvae, insects, and small fishes (e.g., Poeciliidae). Individuals measuring 15.1 
to 30 cm consumed a wider variety of fish, such as M. costae, O. niloticus, S. rhombeus, 
and Gobiidae, and other invertebrates, signaling a shift toward a more predatory feeding 
strategy. As M. atlanticus grows (30.1 to < 45 cm), its diet becomes more generalist, 
dominated by fishes and invertebrates, such as Crustacea and Mollusca. The presence of 
Tubifex spp. demonstrated its predominance across different size classes, mainly in larger 
individuals (Fig. 6).
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FIGURE 5 | Principal Coordinates Analysis (PCoA) ordination of dietary items for different size classes 

of Megalops atlanticus (circle size corresponds to individual size).

Code Largest matches in GenBank Identities (%) E-value Query cover

10A Oreochromis niloticus 100 0.0 100

12A Oreochromis niloticus 100 0.0 100

CH19 Oreochromis niloticus 100 0.0 100

PJ05 Oreochromis niloticus 100 0.0 100

20B Serrasalmus rhombeus 98.94 0.0 100

EVOA      Bathygobius soporator 99.36 0.0 100

EVOB      Bathygobius soporator 99.37 0.0 100

SYMA Myrophis punctatus 99.04 0.0 100

SYMC Myrophis punctatus 98.96 0.0 99

20A Moenkhausia costae 99.66 0.0 99

SI06 Megalops atlanticus 98.54 0.0 99

TABLE 3 | Fish species sequenced in the evaluation of the stomach content of Megalops atlanticus.
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DISCUSSION

Megalops atlanticus consumed prey from various trophic levels, showcasing its generalist 
diet and ability to exploit a wide range of resources, a common characteristic among 
opportunistic predators (Drenner, Hambright, 2002; Costa, Angelini, 2020). This 
strategy is particularly advantageous in disturbed environments, which are marked by 
fluctuations in resource availability (Hall-Scharf et al., 2016). These findings reinforce 
the species’ ecological plasticity and its ability to persist in modified coastal ecosystems. 
Moreover, ontogenetic changes in the diet of M. atlanticus are associated with its growth 
and shifts in habitat use, transitioning from smaller prey, such as insect larvae, to larger 

FIGURE 6 | Description of the diet of Megalops atlanticus with prey volume (%) and Tarpon size (cm). The fish symbol indicates the items 

classified as fishes.
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prey, like fishes (Kurth et al., 2019; Jud et al., 2011). Given the context of an urbanized 
estuary, the current study evaluated all ingested items, regardless of whether ingestion 
was intentional, as potential indicators of anthropogenic influence. This approach is 
especially relevant for a vulnerable species; therefore, even plastic debris was recorded.

The species was recorded exclusively in the intermediate and upper zones of the 
estuary, which are characterized by low oxygen concentrations, reduced salinity, and 
lower water transparency compared to the lower zone, conditions found in urban 
estuaries (Pinto et al. 2025). Despite this, M. atlanticus survives due to physiological 
adaptations, such as oxygen storage in the swim bladder and visual mechanisms that 
facilitate predation in turbid waters (Geiger et al., 2000; Marceniuk, 2005; Schweikert, 
Grace, 2018). These traits allow the species to exploit abundant prey adapted to the 
conditions of human-modified habitats, including aquatic invertebrates, such as Diptera 
larvae and Ephemeroptera nymphs, which are crucial food sources for juvenile fishes 
(Starks, Long, 2017).

The Cocó estuary faces increasing anthropogenic pressures (Barroso et al., 2016), 
representing a threat to juvenile survival in these habitats (Wilson et al., 2019). These 
changes impact not only the habitat quality but also the availability of food resources 
(Pinto et al., 2025). However, freshwater habitats usually favor species like Cichlidae 
and Poeciliidae, which often compose the diet of M. atlanticus. This dietary pattern was 
observed in our study and is consistent with the findings from other studies performed 
in tropical estuaries (Menezes, Menezes, 1968; Jud et al., 2011; Kurth et al., 2019; 
Navarro-Martinez et al., 2020), favoring the occurrence of Tarpon in the study area 
despite the increased urbanization. Dietary changes are essential for the occupation of 
nursery habitats and survival in dynamic habitats (Woodson et al., 2018; Cianciotto et 
al., 2019; Ríos et al., 2019).

Several biotic and abiotic factors influence these ontogenetic variations, such as prey 
availability and pollution (Whitfield et al., 2024). In our study, Tubifex spp. (Naididae) 
was identified as the primary food source for the individuals analyzed, while it appeared 
across a range of size classes, thereby altering the ontogenetic variation. This worm, 
associated with environments rich in organic matter (Rodrigo, Alves, 2018), reflects 
the conditions of the estuary, which is characterized by a high organic load. This 
pattern contrasts with other tropical estuaries, where the diet of M. atlanticus is primarily 
composed of fish and other invertebrates, with clear ontogenetic differentiation 
(Menezes, Menezes, 1968; Jud et al., 2011). The clear prevalence of Tubifex spp. as a 
food resource emphasizes the impact of anthropogenic alterations on the estuary, as 
oligochaetes are biological indicators of polluted environments, tolerant of low oxygen 
levels and organic matter accumulation (Martin et al., 2008; Rodrigues, Alves, 2018).

The presence of the non-native species Oreochromis niloticus in the diet of M. atlanticus 
was confirmed, which indicates the consumption of exotic species of freshwater origin. 
Additionally, three species of Poeciliidae were recorded in the Cocó estuary: Poecilia 
reticulata, P. sphenops, and P. vivipara Bloch & Schneider, 1801 (Gurgel-Lourenço et al., 
2023; Botero et al., 2023; Pinto et al., 2025). However, due to the digestion of the 
samples, it was not possible to identify each species individually in the stomachs. Given 
that only P. vivipara is native, there is a high likelihood that M. atlanticus is consuming 
other non-native fish species.

https://www.ni.bio.br/
https://www.scielo.br/ni


Neotropical Ichthyology, 23(3):e250010, 2025 15/24ni.bio.br | scielo.br/ni

Grazielly B. Matias, Leonardo M. Pinto, Ronaldo C. Gurgel-Lourenço, Talita C. E. S. Nascimento, Denise C. Hissa and Jorge I. Sánchez-Botero

The presence of non-native species in the diet of native fishes alters the trophic 
interactions both directly and indirectly, as well as temporally and spatially, depending 
on the availability of food resources (Pintor, Byers, 2015; Tran et al., 2015; Basic et 
al., 2019). The introduction of species can create new feeding interactions, directly 
impacting the diet of native fishes, which creates a scenario in which exotic predators can 
compete for resources or directly prey on native species, thereby altering the structure 
of fish communities (Rosa et al., 2021). The comprehension related to these dynamics 
is crucial to assessing the ecological impacts of biological invasions and developing 
effective management and conservation strategies. Nile tilapia (O. niloticus), for instance, 
presents physiological adaptations that, when coupled with frequent records, indicate 
the species is well-established in degraded urban environments (Cassemiro et al., 2018). 
Although generalist predators, such as M. atlanticus consume non-native species, the 
presence of these organisms may harm the local biodiversity in the long run (Rosa et 
al., 2021). In this scenario, these non-native species complement or replace native prey 
in the diet of fishes, which modifies the energy and matter flows within the ecosystem. 
However, generalist predators that consume non-native species play a significant role in 
controlling exotic species, reducing their success (Pintor, Byers, 2015).

When compared to other studies (Menezes, Menezes, 1968; Kurth et al., 2019; Jud 
et al., 2011; Navarro-Martinez et al., 2020), our results revealed a varied diet with a 
high frequency of occurrences of prey, with some prey types being more frequent than 
others. Among the recorded prey, certain species stood out due to their uncommon 
occurrence in the diet of M. atlanticus. In particular, Myrophis punctatus had not been 
previously recorded in the diet of this species. This species typically hides within the 
substrate (Able et al., 2010), which makes it unavailable to predators with an upper 
jaw, like M. atlanticus (Westneat, 2005). However, daily vertical movements may allow 
foraging throughout the water column, which could promote the variety of consumed 
items (Luo, Ault, 2012). It is also possible that secondary predation occurs, which consists 
of one predator consuming another one that, in turn, has consumed the primary prey 
(King et al., 2008). This scenario could explain the presence of benthic organisms like 
Vitta meleagris (Lamarck, 1822) and Melanoides tuberculata (Müller, 1774).

Cannibalism was also recorded, which may occur in situations of competition 
where food availability is scarce or in territorial behaviors (Block, Stokes, 2004). This 
practice had not been previously registered for M. atlanticus and can be explained by 
the limitations in environmental conditions to access alternative prey (Block, Stoks, 
2004; Cianciotto et al., 2019). Although molecular analysis can, in some cases, generate 
false positives due to the amplification of residual DNA fragments in the stomach 
(Hoogendoorn, Heimpel, 2001; King et al., 2008). Therefore, we highlight the need 
for further studies, combining behavioral observations and complementary techniques, 
as well as the continued refinement of molecular protocols to enhance the accuracy of 
dietary analysis.

All species identified in this estuary have been previously recorded in fauna surveys 
(Gurgel-Lourenço et al., 2023), which helps validate the morphological identification. 
In addition to the difficulty of identification due to the high digestion state, the 
families Characidae and Cichlidae, Eleotridae and Gobiidae, and Ophichthidae and 
Synbranchidae exhibit significant morphological similarities, which complicates 
visual analysis. Thus, we demonstrate how molecular data can enhance taxonomic 
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analysis of fish stomach contents. The combined use of taxonomic methods, molecular 
analysis, and record history provides realistic estimates of the composition found in 
the stomach contents of M. atlanticus. Furthermore, all fish species identified in the 
stomach corroborate previous studies on its feeding behavior (Menezes, Menezes, 1968; 
Jud et al., 2011; Kurth et al., 2019; Navarro-Martinez et al., 2020). Therefore, molecular 
analysis was crucial to accurately identify the fish species in the M. atlanticus diet.

Several procedures can influence the success of DNA amplification from the stomach 
contents, which include transport, storage, proper use of techniques, and sample quality 
(Traugott et al., 2020). The use of diet analysis via DNA began expanding in the 2000s 
and has been continuously refined, offering several benefits, such as greater specificity 
and sensitivity in detecting and identifying food DNA, as well as validating the identity 
of detected prey through DNA sequencing.

Despite the success in identifying stomach contents, the limitations encountered 
included sample degradation and enzymatic activity in the predator’s stomach. This 
made the amplification of some sequences difficult and, consequently, the identification 
of samples (Piñeros, Calderón-Cortés, 2023). When analyzing the stomach contents of 
species, it is important to note that the DNA of consumed food is digested and degraded 
over time. As a result, the genes present in the cells will be partially digested, resulting in 
fragmented DNA strands (Traugott et al., 2020). This makes the detection of long DNA 
fragments increasingly difficult as the prey is digested over a longer period (Deagle 
et al., 2006). This difficulty was also observed by Rosel, Kocher (2002) for Atlantic 
cod, Gadus morhua Linnaeus, 1778, by Boza et al. (2022) in the stomach contents of 
Trichiurus lepturus Linnaeus, 1758 (Scombriformes: Trichiuridae), and by Paquin et al. 
(2014) in 12 species of subterranean fish in the North Pacific.

Conservation strategies for M. atlanticus should consider the restructuring of 
altered food webs, which can trigger negative interactions and provide lower-protein 
trophic resources (Bartley et al., 2019; Costa, Angelini, 2020). This is supported by 
the identification of non-native species in the diet of M. atlanticus, which may offer 
lower nutritional value compared to native prey (Bartley et al., 2019). To address these 
challenges, integrated management strategies are essential. In Brazil, there are no 
specific conservation measures for M. atlanticus (Batista et al., 2020). Therefore, habitat 
restoration and connectivity between breeding, nursery, and migration environments 
must be prioritized to support the species’ persistence in estuaries (Kurth et al., 2019; 
Luo et al., 2020). Protecting these habitats and understanding the species’ habitat, diet, 
and population dynamics are critical for ensuring successful population recruitment and 
long-term conservation (Bartley et al., 2019; Kurth et al., 2019). 

This study provides new insights into the diet of juvenile M. atlanticus in urban estuaries 
and reveals its foraging strategy and food composition. Anthropogenic activities, along 
with changes in biotic and abiotic conditions, may influence the fishes’ diets (Lyasenga 
et al., 2021) and the capacity of these environments to function as nursery grounds 
(Kurth et al., 2019; Toft et al., 2018). The ability of M. atlanticus to consume non-native 
species and adjust its dietary composition according to body size highlights its role as a 
generalist predator and potential controller of invasive species. These findings emphasize 
the need for urgent habitat restoration, integrated management, and public awareness 
efforts to ensure successful population recruitment and preserve the ecological functions 
of M. atlanticus within estuarine ecosystems.
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