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Stable isotope analysis reveals 
partitioning in prey use by Kajikia audax 
(Istiophoridae), Thunnus albacares, 
Katsuwonus pelamis, and Auxis spp. 
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Pacific of Ecuador
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Kajikia audax, Thunnus albacares, Katsuwonus pelamis, and Auxis spp. occupy 
high and middle-level trophic positions in the food web. They represent 
important sources for fisheries in Ecuador. Despite their ecological and economic 
importance, studies on pelagic species in Ecuador are scarce. This study uses stable 
isotope analysis to assess the trophic ecology of these species, and to determine 
the contribution of prey to the predator tissue. Isotope data was used to test the 
hypothesis that medium-sized pelagic fish species have higher δ15N values than 
those of the prey they consumed, and that there is no overlap between their δ13C 
and δ15N values. Results showed higher δ15N values for K. audax, followed by 
T. albacares, Auxis spp. and K. pelamis, which indicates that the highest position 
in this food web is occupied by K. audax. The stable isotope Bayesian ellipses 
demonstrated that on a long time-scale, these species do not compete for food 
sources. Moreover, δ15N values were different between species and they decreased 
with a decrease in predator size. 

Keywords: Ecuadorian waters, Feeding ecology, Food web, Marine ecology, 
Pelagic fishes.
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Kajikia audax, Thunnus albacares, Katsuwonus pelamis e Auxis spp. ocupam posições 
tróficas intermedias e/ou elevadas nas cadeias alimentares. Estas espécies representam 
um importante recurso pesqueiro no Ecuador. Apesar da sua importância 
económica e ecológica, estudos nestas espécies pelágicas no Ecuador são raras. Este 
estudo usa isótopos estáveis para avaliar o seu nível trófico de modo a determinar a 
contribuição das suas presas para os tecidos destes predadores. Dados dos isótopos 
foram usados para testar a hipótese de que estas espécies de peixes pelágicos 
possuem valores mais elevados de δ15N do que daqueles das presas consumidas, 
e que não existe uma sobreposição entre os valores de δ13C e δ15N. Resultados 
mostram que valores mais elevados de δ15N para K. audax, seguidos por T. albacares, 
Auxis spp. e K. pelamis, indicam que a posição mais elevada na cadeia alimentar é 
ocupada por K. audax. Elipses Bayesianas de isótopos estáveis demonstram que, a 
uma escala de longo-termo, estas espécies de peixes não competem pelos recursos. 
Adicionalmente, os valores de δ15N são diferentes entre espécies de peixe estudadas 
e estes valores decrescem com a diminuição do tamanho do predador. 

Palavras-chave: Águas Equatorianas, Ecologia alimentar, Cadeia alimentar, 
Ecologia marinha, Peixes pelágicos.

INTRODUCTION

The striped marlin Kajikia audax (Philippi, 1887), the skipjack tuna Katsuwonus pelamis 
(Linnaeus, 1758) and the yellowfin tuna Thunnus albacares (Bonnaterre, 1788) are pelagic 
fishes widely distributed in the oceans (Smith, Brown, 2002) and are the most important 
fishing sources for local and international fishing fleets in Ecuador (Schaefer et al., 2009; 
Martinez-Ortiz et al., 2015; Tanabe et al., 2017). The capture of these species has an 
economic value of approximately 73 million US dollars per year for Ecuador (Martínez-
Ortiz et al., 2015). These economic gains have promoted the study and development of 
fisheries, mainly for T. albacares (Martinez-Ortiz et al., 2015). For K. audax, K. pelamis 
and the small tunas Auxis spp., there is a lack of biological and ecological knowledge for 
Ecuador. Hence, it is necessary to assess the trophic web to detect shifts or impacts in the 
ecosystem resulting from the extraction of these species and to establish relationships or 
differences in their trophic strategies.

The pelagic fishes K. audax, T. albacares, K. pelamis and Auxis spp. are important 
components in the ecosystem and facilitate energy transfer between low and top trophic 
levels because they are preyed on by sharks, fishes, seabirds, and marine mammals (Wang 
et al., 2003; Arizmendi-Rodríguez et al., 2006; Galván-Magaña et al., 2013; Rosas-Luis 
et al., 2016; Diop et al., 2018). They are also active predators of fishes, cephalopods, and 
crustaceans (Alverson, 1963; Loor-Andrade et al., 2017; Rosas-Luis et al., 2017; Varela et 
al., 2017). In addition, these species are efficient transfers of biomass to other areas and 
water depths since they are fast-moving species that perform horizontal and vertical 
movements (Holland et al., 1990). 

The study of the trophic ecology of sympatric species in marine environments is 
achieved by using traditional stomach content analysis, and more recently the analysis 
of stable isotopes of carbon (denoted as δ13C) and nitrogen (denoted as δ15N) (Peterson, 
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Fry, 1987). Stable isotope analysis allows the characterization of migratory movements 
(Wunder, 2012; Segers, Broders, 2015) and is useful for obtaining information about 
sympatric species (Vanderklift et al., 2006; Cabanillas-Terán et al., 2016). δ15N is an 
indicator of a consumer’s trophic position, as the value in consumer tissues becomes 
higher compared to their prey (McCutchan et al., 2003; Vanderklift, Ponsard, 2003). 
δ13C values can indicate primary sources in a trophic network (McCutchan et al., 2003). 
In marine environments, δ13C values indicate the inshore/pelagic versus offshore/benthic 
contribution to food intake, indicating areas with low and high primary production 
respectively (Hobson et al., 1994; Cherel, Hobson, 2007; Navarro et al., 2013). The 
stable isotopes of δ15N and δ13C have been used to study the feeding behavior of large 
pelagic fishes in the central and north Pacific Ocean (Graham et al., 2007; Acosta-Pachón 
et al., 2015; Li et al., 2016; Young et al., 2018). In Ecuadorian waters, isotope values 
showed that sympatric species, such as the billfish Istiophorus platypterus (Shaw, 1792), 
the blue marlin Makaira nigricans Lacepède, 1802, and the swordfish Xiphias gladius 
Linnaeus, 1758, do not compet for food sources (Rosas-Luis et al., 2017). The isotope 
analysis and stomach contents demonstrated that X. gladius consumed prey from deeper 
waters, while I. platypterus and M. nigricans fed mainly in upper waters (Rosas-Luis et al., 
2017). For Thunnus albacares, Varela et al. (2017) found that stable isotope ellipses had no 
overlap among size classes and suggested that the prey size increases as the tuna grow. 
These studies allowed the understanding of the food web; however, it is necessary to 
include K. audax, K. pelamis, and Auxis spp. in the analysis, to better explain the trophic 
structure of the ecosystem. 

Pelagic fishes are important and abundant components in the marine ecosystem of 
Ecuador (Martínez-Ortiz et al., 2015), but there is a lack of knowledge related to the 
trophic role of the sympatric species K. audax, K. pelamis, and Auxis spp. Therefore, this 
study represents an effort to identify the trophic relationships that these species have in 
the marine ecosystem off the coast of Ecuador, with a main objective to compare the 
δ15N and δ13C values of each species found in their muscle tissue. Moreover, we aim to 
explore the hypothesis that medium-sized pelagic fish species have higher δ15N values 
than those of the prey they consumed, and that the prey consumed are different for each 
predator. Our results represent the first attempt to study tissue samples of the fishes K. 
audax, K. pelamis, and Auxis spp. collected in the fishing ports of Ecuador and analyzed 
by isotopic analysis.

MATERIAL AND METHODS

Study area. The marine environment off the coast of Ecuador is characterized by warm 
waters coming from the Equatorial Current System, with the influence of cold waters 
from the Humboldt Current System (Bendix, Bendix, 2006). High primary production 
areas are promoted by the convergence of the two current systems off the coast of 
Ecuador (Bendix, Bendix, 2006; Rincón-Martínez et al., 2010). Fisheries in Ecuador 
are characterized by two main groups the longline fishery, targeting large and medium 
pelagic fishes, and a fishery that uses gillnets to capture cephalopods and other fishes 
(Martínez-Ortiz et al., 2015). The longline fishery works in areas between 37 and 130 
km off the Ecuadorian coast in the pelagic environment of oceanic waters and the 
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gillnets from the shore to 130 km off the Ecuadorian coast (Rosas-Luis et al., 2017).
 
Samples. Kajikia audax, T. albacares, K. pelamis and the group Auxis spp. were 

collected from catches brought to the fishing ports of Playita Mía, Manta, Ecuador 
and Santa Rosa, Salinas, Ecuador during June 2014 and May 2015 (Fig. 1). The total 
body length (TL) was recorded to the nearest 10 mm. Auxis spp. grouped the frigate 
tuna, Auxis thazard (Lacepède, 1800), and the bullet tuna, Auxis rochei (Risso, 1810) 
since separation by morphological characteristics was not possible. Additionally, the 
Patagonian squid Doryteuthis gahi (d’Orbigny, 1835) and the dart squid Lolliguncula 
diomedae (Hoyle, 1904) were collected in the same fishing ports. A small portion of the 
dorsal muscle of the caudal peduncle of fishes and the mantle of squids was extracted 
and stored at -20°C in the laboratory of trophic ecology at the Universidad Laica Eloy 
Alfaro de Manabí until lipid extraction and isotopic procedures. Furthermore, prey 
items, collected from the stomach contents of predators reported by Rosas-Luis et al. 
(2017), were taken to characterize their values. Samples included complete individuals 
of the Peruvian anchovy Engraulis ringens Jenyns, 1842, the Peruvian hake Merluccius 
gayi (Guichenot, 1848), the Reinhardt’s cranch squid Liochranchia reinhardti (Steenstrup, 
1856), and the pelagic octopod Japetella sp. (Tab. 1).

FIGURE 1 | Ecuadorian waters in the Pacific Ocean. Polygons indicate areas where artisanal longline 

fisheries operate. Black lines represent the flux of warm waters from the Equatorial Current System, 

and gray dotted lines represent the cold waters from the Humboldt Current System.
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Lipid extraction and isotopic analysis. To avoid biases in the δ13C values, lipid 
extraction was applied to all tissue samples (Post et al., 2007). Lipids were extracted 
from all muscle samples with chloroform and methanol following the protocol of Bligh, 
Dyer (1959). All samples were then freeze-dried and powdered, with 0.3 to 0.4 mg of 
each sample packed into tin capsules. Isotopic analyses were performed at the Estación 
Biológica de Doñana, Spain. Samples were combusted at 1,020°C using a continuous 
flow isotope-ratio mass spectrometer (Thermo Electron) by means of a Flash HT Plus 
elemental analyzer interfaced with a Delta V Advantage mass spectrometer. Stable 
isotope ratios were expressed in the standard δ-notation (‰) relative to Vienna Pee 
Dee Belemnite (δ13C) and atmospheric N2 (δ15N). Based on laboratory standards, 
the measurement error was ±0.1‰ and ±0.2‰ for δ13C and δ15N, respectively. The 
standards used were EBD-23 (cow horn, internal standard), LIE-BB (whale baleen, 
internal standard) and LIE-PA (razorbill feathers, internal standard). These laboratory 
standards were previously calibrated with international standards supplied by the 
International Atomic Energy Agency.

TABLE 1 | Mean and standard deviation (SD) of the length, δ13C and δ15N values of pelagic fishes and cephalopods sampled in Ecuadorian 

waters. The length obtained for squids was the dorsal mantle length, and for fishes the total length. * = isotope values were taken from 

Rosas-Luis et al. (2017); these samples were taken at the same time as those in the current work.

Species n Length (cm) ±SD δ13C (°/oo) δ15N (°/oo)

Fishes

Kajikia audax 16 274.8 ±31.46 -16.6 ±0.23 14.9 ±0.67

Thunnus albacares 14 42.4 ±2.87 -17.2 ±0.23 13.2 ±1.06

Katsuwonus pelamis 30 39.4 ±3.20 -17.3 ±0.46 11.1 ±1.52

Auxis spp. 8 28.1 ±0.99 -17.9 ±0.33 11.3 ±1.20

Scomber japonicus 5* 14.1 ±2.12 -16.9 ±0.06 11.7 ±0.47

Engraulis ringens 1 15.2 -16.3 12.1

Lagocephalus lagocephalus 1* 32 -17.2 12.3

Merluccius gayi 1 45.1 -16.3 11.4

Pristigenys serrula 1* 19.4 -17.5 11.0

Opisthonema libertate 5* 18.0 ±1.50 -16.2 ±0.16 13.3 ±0.25

Cephalopods

Dosidicus gigas 20* 43.4 ±3.34 -16.0 ±0.54 13.4 ±1.86

Loligunculla diomedae 2 10 -16.6 ±0.71 12.8 ±0.3

Ancistrocheirus lesueurii 3* 24.3 ±1.15 -17.4 ±0.11 12.4 ± 1.08

Liocranchia reindarthi 1 20 -16.9 12.0

Tysanoteuthis rhombus 1* 45 -16.5 11.5

Doryteuthis gahi 4 20.2 ±0.50 -15.0 ±0.15 11.1 ±0.28

Japetella sp. 1 12 -16.1 12.9
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Diet. The diet of K. audax was taken from Loor-Andrade et al. (2017) and for T. 
albacares, diet information was based on Varela et al. (2017). These previous reports 
used samples from the same area and the same sampling time of this work (Tab. 2). 
Unfortunately, there were no reports on the feeding habits of Auxis spp. and K. pelamis 
in the study area; thus, for increased clarity, fish diets from outside the study area were 
used for K. pelamis, based on Tanabe (2001) (Tropical Western Pacific Ocean), and for 
Auxis spp. based on Siraimeetan (1985) (Tuticorin coast, Gulf of Mannar).

TABLE 2 | Percentage of the index of relative importance (IRI) of pelagic fishes. Data summarized from 

Kajikia audax followed Loor-Andrade et al. (2017), Thunnus albacore followed Varela et al. (2017), K. pelami 

followed Tanabe (2001), and Auxis spp. followed Siraimeetan (1985).

%IRI

Prey/Predator
Thunnus 
albacares

Kajikia 
audax

Auxis spp. Katsuwonus pelamis

Auxis spp. 90.85 44.30

K. pelamis 1.90

Fishes 5.04 37.70 39

Cephalopods 0.16 5.40 19 0.30

Crustaceans 42 3.54

Fish larvae 96.16

Trophic width. As a measure of trophic width (Jackson et al., 2011), we calculated 
the corrected standard ellipse area (SEAc) for K. audax, T. albacares, K. pelamis, and 
Auxis spp. This metric represents a measure of the total amount of isotopic niche 
exploited by a predator and is thus a proxy for the extent of the trophic niche exploited 
by the studied species (high values of SEAc indicate high trophic width) (Jackson et al., 
2011). The corrected standard ellipse area (SEAc) based on the Bayesian ellipse area 
was proposed as an unbiased metric with respect to the sample size, particularly for 
the Bayesian method, which incorporates a robust comparison considering uncertainty 
with smaller sample sizes, resulting in larger ellipse areas. The SEAc was calculated by a 
covariance matrix of the samples. The sample variance provides an unbiased estimate of 
the population variance for data x and y, that defines their shape and area (Jackson et al., 
2011). The SEAc was fitted using R 3.1.0 for Windows (R Development Core Team, 
2017). Isotopic standard ellipse areas were calculated using the SIBER package (Jackson 
et al., 2011) included in the SIAR library, with R 3.1.0 for Windows (R Development 
Core Team, 2017). The Niche Overlap Metric was calculated as the probability that an 
individual from the predator species will be found within the niche of the other predator 
species with an alpha=0.95 using the nicheROVER routine in R (Swanson et al., 2015).

C and N contributions. Kajikia audax, T. albacares, K. pelamis, and the Auxis 
spp. were used as single species in the isotopic analysis because the number of tissue 
samples was greater than 7 for each species (Tab. 1). A sample number greater than 7 is 
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considered adequate for posteriori statistical analysis (Jackson et al., 2011). 
The Stable Isotope Analysis in R (SIAR) was used to calculate the proportion of 

δ13C and δ15N isotopes in the diets of the predators (Parnell et al., 2010). The prey 
species of K. audax and T. albacares were mixed into composite groups to obtain a 
high number of isotope values despite their different body size (Tab. 1). Groups were 
established considering that they were consumed by predators (according to previous 
reports for the area, Tab. 2). The fish group for K. audax and T. albacares was composed 
of K. pelamis, Auxis spp., O. libertate, Scomber japonicus Houttuyn, 1782, E. ringens, L. 
lagocephalus, M. gayi, and P. serrula. The cephalopod group for K. audax and T. albacares 
was composed of L. reinhardti, Japetella sp., Dosidicus gigas, T. rhombus, and A. lesueurii. 
Unfortunately, we had no muscle tissue of prey consumed by K. pelamis and Auxis spp., 
thus the contribution of δ13C and δ15N for these species was not calculated. The Trophic 
Discrimination Factor (TDF) used was 1.9 ± 0.4 for δ15N and 1.8 ± 0.3 for δ13C related 
to Pacific bluefin tuna (Madigan et al., 2012), which were the most appropriate for the 
species in this work. 

Statistical analysis. Size, δ13C and δ15N differences between species were tested 
using one-way ANOVA tests, and significant differences (p≤ 0.05) between pairs of 
species were identified with a post hoc Tukey test. All tests were performed in the IBM 
SPSS statistics software v.19 (IBM, 2010). 

RESULTS

Isotope values. The mean δ13C values of K. audax, T. albacares. K. pelamis and Auxis 
spp. ranged between -17.9‰ and -16.6‰ (Tab. 1). The mean δ13C value of K. audax 
was -16.6‰, higher than those of T. albacares, K. pelamis, and Auxis spp. (F3,59 = 25.69, p 
< 0.05). T. albacares and K. pelamis had similar δ13C values (Tabs. 1–3). The mean δ15N 
values ranged between 11.1‰ and 14.9‰ (Tab. 1). Significant differences in the δ15N 
values were found between species (F3,59 = 35.73, p < 0.05) (Tabs. 1–3) with K. audax 
showing the highest values. The post hoc Tukey test showed similar δ15N values for K. 
pelamis and Auxis spp. (Tab. 3). 

Group  Group
p value Overlap probability

δ13C δ15N

Kajikia audax Thunnus albacares 0.00 0.00 31.9

Katsuwonus pelamis 0.00 0.00 35.6

Auxis spp. 0.00 0.00 0.4

Thunnus albacares Katsuwonus pelamis 0.87 0.00 71.8

Auxis spp. 0.00 0.00 23.4

Katsuwonus pelamis Auxis spp. 0.00 0.99 46.1

TABLE 3 | Results of the Tukey post hoc test for the comparison of δ13C and δ15N values among groups and species and overlap probability. 

Bold numbers are significant values.
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Trophic width. The broadest SEAc was observed for K. pelamis (1.6), followed 
by Auxis spp. (1.4) (Fig. 2). Narrow SEAcS were recorded for K. audax (0.51) and T. 
albacares (0.7). A high overlap probability was found between T. albacares and K. pelamis 
(71.8%) (Tab. 3; Fig. 2). Moderate overlap probability was found among K. audax, T. 
albacares and K. pelamis, T. albacares and Auxis spp., and K. pelamis and Auxis spp. (Tab. 
3; Fig. 2). Low overlap probability was found between K. audax and Auxis spp. (0.4%) 
(Tab. 3; Fig. 2).

δ13C and δ15N contribution of prey groups in the diet. The results of the SIAR 
analysis showed that fishes were the most important δ13C and δ15N contributors (up to 
87%) for T. albacares, while cephalopods were the most important contributors for K. 
audax (up to 53%) (Fig. 3). The summary of the diet reports based on stomach contents 
indicated that fishes represent 95.8% of the diet of T. albacares and 83.9% of the diet of 
K. audax, with cephalopods being the second most represented group, but significantly 
less important (4.2 and 16.1%, respectively; Fig. 3).

FIGURE 2 | Mean and standard deviation of δ15N and δ13C values and corrected standard ellipse areas 

(SEAc) based on δ13C and δ15N values of pelagic fish species off the coast of Ecuador. Symbols represent 

the individual organisms: triangles are for Katsuwonu pelamis, circles are for Auxis spp., crosses are for 

Thunnus albacares and X´s are for Kajikia audax.
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DISCUSSION

In this study, isotope analysis allowed the identification of the trophic width and overlap 
between Auxis spp., K. pelamis, T. albacares, and K. audax. The ellipse metrics provided 
quantitative and integrated information about sources and niche breadth (Boecklen 
et al., 2011), contributing to the ecological knowledge of pelagic and commercial 
species in the marine ecosystem of Ecuador. The δ13C values suggest that K. audax has 
a different trophic strategy, probably consuming prey from a trophic chain based in 
high productivity areas, while Auxis spp. may be moving to low productivity areas and 
consuming different prey sources. T. albacares and K. pelamis had similar δ13C values, 
thus indicating that they coexist in the same areas. Based on these results, the discussion 
is focused on explaining the trophic strategy and interactions of these sympatric species.

The highest δ13C values were recorded for K. audax, followed by T. albacares and K. 
pelamis. On the one hand, the highest δ13C values were related to high productivity 

FIGURE 3 | Modeled proportion of prey groups in the diet of A. Thunnus albacares and B. Kajikia audax 

obtained using a stable isotope analysis in R. C. is the comparison between the mean proportional 

contribution of fish (black area) and cephalopods (gray area) to the diets of T. albacares and K. 

audax, left bars were based on δ15N and δ13C isotopes, and right bars were based on stomach content 

identification reported by Varela et al. (2017) for T. albacares, and Loor-Andrade et al. (2017) for K. audax. 
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ocean areas (France, Peters, 1997; Ménard et al., 2007; Carlisle et al., 2014), coinciding 
with marine areas where fishing activity in Ecuador occurs (Martinez-Ortiz et al., 
2015). These species have been described as fishery sources with high abundances in 
waters where upwelling events favor the enrichment of primary production, such as the 
Humboldt Current and the Gulf of California (Stock et al., 2017). For the Ecuadorian 
waters, these species are usually found in catches close to the coast (Martinez-Ortiz 
et al., 2015). On the other hand, low values of δ13C in Auxis spp., compared to those 
of the other species, could be the result of feeding habits related to pelagic and open 
waters, affecting the signal in the muscle samples. Auxis spp. and other scombrid fishes, 
including T. albacares and K. pelamis, are fast-moving species in interior as well as more 
distant coastal waters (Holland et al., 1990; Schaefer et al., 2009), resulting in a different 
feeding strategy consuming small pelagic fishes, such as S. japonicus and myctophids, 
and pelagic crustaceans (Varela et al., 2017), that could be available in and outside of 
the studied area. The trophic width as indicated by the SEAc showed that the fishes 
Auxis spp. and K. pelamis had broader isotopic ellipse areas, and that K. audax had the 
narrowest area. The consumption of similar prey by predators was confirmed by the 
isotope values and niche overlap probability between Auxis spp. and K. pelamis (46%). 
Nevertheless, it is necessary to identify the potential prey of these species. If they are 
voracious and active predators, the results will show a wide range of prey as observed in 
squids of similar size (Rosas-Luis et al., 2014). 

The highest δ15N values were recorded for K. audax and T. albacares, and the lowest 
were found in K. pelamis and Auxis spp. These values agree with the assumption that 
the increase in δ15N values results from prey ingestion, because the type and size of prey 
consumed affect the δ15N values in the predator tissue. The consumption of large prey 
increases the δ15N values (Post, 2002; Hussey et al., 2014). The largest predator in this 
study was K. audax, which consumes large prey such as K. pelamis and Auxis spp. (Loor-
Andrade et al., 2017). The δ15N values allowed the comparison of K. audax with top 
predators and T. albacares with mid-level predators, which corresponds to the trophic 
position calculated for T. albacares in Ecuadorian waters (Varela et al., 2017) and for K. 
audax in the north Pacific Ocean (Torres-Rojas et al., 2013). The lowest level position 
was found in K. pelamis and Auxis spp. 

As top predators, K. audax and T. albacares segregate from the other species, as suggested 
by the stomach contents and isotope results. They share food resources, with K. audax 
feeding mainly on Auxis spp. and other fishes and cephalopods, and T. albacares feeding 
mainly on Auxis spp. (Varela et al., 2017). For T. albacares and K. pelamis, a higher overlap 
probability was recorded; thus, it can be suggested that these species also share food 
resources in Ecuadorian waters. However, a comparison of the δ15N values indicates 
that T. albacares had higher δ15N values than K. pelamis. Thus, they could consume prey 
that are located in the same area, but of different sizes (large prey for T. albacares), as 
was reported for these species in the Gulf of California (Alatorre-Ramírez et al., 2017). 
The isotope and stomach content results are complementary because the isotope values 
support the evidence of prey contribution, taking into account the turnover rate of 
muscle tissue (several months) (Madigan et al., 2012; Vander-Zanden et al., 2015) and 
the estimated diet with stomach content identification, hours or days depending on the 
prey tissue (Olson, Boggs, 1986; Acosta-Pachón, Ortega-García, 2019). Thus, these 
results highlight the importance of Auxis spp. in the diets of T. albacares and K. audax, 
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and cephalopods in the diet of K. audax. In Ecuadorian waters, K. audax and T. albacares 
seem to be opportunistic predators that feed on available and abundant species. The 
fishes Auxis spp. could be abundant in the area because they have been reported as 
components in the diet of top predators (Loor-Andrade et al., 2017; Rosas-Luis et al., 
2017; Varela et al., 2017). More descriptions of the feeding habits of marine species are 
needed to corroborate the trophic relationships in the ecosystem, and other species such 
as Auxis spp. and K. pelamis should be included in the analysis.

In conclusion, our results suggest that the δ13C values of T. albacares and K. pelamis 
overlap, indicating that they share similar foraging areas or a similar trophic strategy. 
Their δ15N values allowed the categorization of the food web; the highest position in 
the food web was occupied for the large species K. audax and middle trophic positions 
for T. albacares, K. pelamis, and Auxis spp. confirming the hypothesis that medium-sized 
pelagic fish species accumulate δ15N isotopes according to the size of prey consumed 
(large predators consumed larger prey than medium-sized predators). In addition, the 
different predator size allows the use of the same habitat by partitioning in the prey 
consumed by each predator. Considering these results and the fact that the fishes K. 
audax, T. albacares and K. pelamis are important for fisheries in Ecuador, it is necessary 
to identify the impact that fisheries have on natural populations. The SEAc of Auxis 
spp. could be related to our analysis of two species as a single group, which likely do 
not have similar feeding habits. Unfortunately, it was not possible to segregate the two 
species during the morphological identification, and no stomach content samples were 
taken. Thus, future research will require the use of genetic and morphological methods 
to separate the two species and to continue trophic ecology studies of all species caught 
in fisheries to better understand the food web of the marine ecosystem.
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