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The IUCN Red List (RL) provides high-quality conservation assessments for 
individual species, yet the rate and scale of environmental deterioration globally 
challenges the conservation community to develop expedited methods for risk 
assessment. Here we compare threat assessments for 3,001 species of Neotropical 
freshwater fishes (NFF) in the IUCN–RL using readily accessible data types as 
proxies for extinction risk: geographic range, elevation, and species publication 
date. Furthermore, using geographic and taxonomic data alone, we generated 
preliminary conservation assessments for 2,334 NFF species currently awaiting 
IUCN assessment, identifying an additional 671 NFF species as potentially 
threatened. This number of potentially threatened species represents an increase 
of 59% over the number of species currently assigned to threat categories by the 
IUCN–RL. These results substantially expand the number of threatened NFF 
species from 422 currently on the IUCN RL to 1,093 species as threatened or 
potentially threatened, representing about 18% of all NFF species. Extinction 
risk is greater in species with smaller geographic ranges, which inhabit upland 
rivers, and which were described more recently. We propose the Central and 
Southern Andes, and Eastern Guiana Shield as priorities in the upcoming IUCN 
RL assessment of NFF species conservation risk.
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A Lista Vermelha (IUCN) fornece avaliações precisas sobre status de 
conservação das espécies, porém a taxa e escala de deterioração ambiental desafia 
a comunidade conservacionista a desenvolver métodos rápidos para avaliações 
de riscos de extinção. Aqui, comparamos as avaliações da IUCN para 3.001 
espécies de peixes dulcícolas neotropicais com dados facilmente acessíveis de 
risco de extinção: extensão de ocorrências, altitude e data de publicação das 
espécies. Além disso, usando apenas dados geográficos e taxonômicos, geramos 
avaliações preliminares de conservação para 2.334 espécies de peixes neotropicais 
aguardando avaliação da IUCN, e identificamos 671 espécies adicionais como 
potencialmente ameaçadas. Este número de espécies potencialmente ameaçadas 
representa um aumento de 59% em relação aquelas classificadas nas categorias de 
ameaça pela IUCN. Estes resultados expandem o número de espécies ameaçadas 
segundo a IUCN de 422 para 1.093 espécies ameaçadas ou potencialmente 
ameaçadas, representando cerca de 18% das espécies de peixes neotropicais. O 
risco de extinção é maior para espécies com distribuições geográficas restritas, que 
habitam rios de terras altas e que foram descritas mais recentemente. Sugerimos 
a região Central e Meridional do Andes e o Escudo das Guianas Orientais 
como prioridades para as próximas avaliações da IUCN sobre a conservação das 
espécies de peixes dulcícolas neotropicais.

Palavras-chave: Biodiversidade, Conservação, Extensão de Ocorrência, Lista 
Vermelha (IUCN). 

INTRODUCTION

Continental freshwaters are home to vertebrate species density higher than most other 
ecosystems on Earth. Almost half of the world’s fish species (about 14,750 of 35,700) 
are restricted to continental freshwater environments, including rivers, streams, 
springs, lakes, ponds, swamps, and wetlands, in a habitat volume that comprises 
less than 0.001% of the Earth’s total water supply. Freshwaters are a renewable, yet 
a finite natural resource, being essential to maintain hydro-climatic regimes and 
almost all economic human activities (Dudgeon et al., 2006; Hoekstra, Mekonnen, 
2012). Freshwater ecosystems are increasingly threatened worldwide, especially by 
the expansion of energy production (Finer, Jenkins, 2012), mining (Ferreira et al., 
2014), aquaculture (Valladão et al., 2018), agriculture (Rosa et al., 2020) and urban 
landscapes (McKinney, 2006). Besides, freshwater environments are being depleted 
more quickly than their terrestrial counterparts (Albert et al., 2020a), and biodiversity 
losses are proportionately greater in freshwater than in terrestrial ecosystems (Turak et 
al., 2017). Fishes and amphibians are among the most threatened of all vertebrates, and 
their species richness and abundances are declining rapidly at regional and continental 
scales (Reid et al., 2019). 

Freshwater ecosystems are unequally distributed across the Earth’s surface, with c. 
30% of the global river discharge flowing through Neotropical river basins. Neotropical 
freshwaters comprise continental waters of South America, Middle America, and the 
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Caribbean islands (Berra, 2007; Nelson et al., 2016). This vast realm encompasses a 
variety of aquatic environments, with distinct faunas adapted to torrential mountain 
rapids and cascades, upland rainforest rivers and streams, karstic and phreatic caverns, 
lowland floodplains, oxbow lakes, deep (to 100 m) river channels, and coastal rivers and 
estuaries (Albert et al., 2011a; Crampton, 2011). Those environments are distributed 
throughout the northern, central, and southern portions of the Andean cordilleras, 
Central America and the Greater Antilles, the upland Guiana and Brazilian shields, and 
the lowland Amazon, Orinoco and La Plata River basins. Each of those regions displays 
a heterogeneous combination of aquatic ecosystems, and a unique composition of fish 
species and local communities (e.g., Albert et al., 2020a). 

Neotropical freshwater fishes (NFF) constitute the most species-rich vertebrate fauna 
on Earth (Fig. 1). With over 6,200 valid species (Albert et al., 2020b), the NFF species 
represent c. 30% of the world’s continental fishes, or about 10% of all living vertebrates 
(Nelson et al., 2016). Dozens of new species are described each year (Fricke et al., 
2020), such that total NFF species richness has been projected to exceed 9,000 species 
(Reis et al., 2016). As with most ichthyofauna, the remarkable NFF species diversity 
is unevenly distributed among higher taxa, with approximately 70% of the species 
concentrated within the two most species-rich of the 40 NFF taxonomic orders, and 
95% in just the top five orders: Siluriformes (catfishes), Characiformes (tetras, piranhas 
and allies), Cyprinodontiformes (killifishes, rivulids, and allies), Cichliformes (cichlids), 
and Gymnotiformes (Neotropical electric fishes). Species richness is also unevenly 
distributed within taxonomic orders, with 60% of the species in the top five of the 97 
NFF taxonomic families (van der Sleen, Albert, 2017; Dagosta, de Pinna, 2019). The 
phylogenetic diversity represented by these diverse NFF taxa is accompanied by an 
enormous diversity of functional traits, ecophysiological specializations for feeding and 
habitat utilization, reproductive modes, and life history strategies (Albert, Reis, 2011; 
Crampton, 2011; Toussaint et al., 2016).

The mega-diverse Neotropical ichthyofauna also has an uneven distribution of 
geographic range sizes in which most species have small ranges, and a few species 
have exceptionally widespread geographic ranges across multiple ecoregions (Albert 
et al., 2011b). In the Amazon, the largest hydrographic basin in the world, most fish 
species are not exclusive to a single drainage (Dagosta, de Pinna, 2019), corroborating 
the hypothesis that the NFF’s biogeographical history is complex and that basins 
are historically composite (Dagosta, de Pinna, 2017). Range-restricted NFF species 
are usually limited to rugged upland regions with high topographic relief located 
towards the continental periphery (e.g., Andes, shields), while the more geographically 
widespread species occur mostly on low-relief (i.e., flat) lowland river basins at the 
continental core (Albert et al., 2011b; Dagosta, de Pinna, 2019). Consequently, upland 
drainages generally exhibit relatively lower local species richness (i.e., lower alpha 
diversity) but a relatively greater change in species composition across neighboring 
watersheds (i.e., higher geographic beta diversity) as compared with lowlands (Albert 
et al., 2017). Even though lowland rivers at the continental core are centers of species 
richness, upland rivers and coastal drainages at the continental periphery have higher 
species endemism (Albert et al., 2018).

Neotropical waterways, as with other tropical freshwater systems worldwide, are 
experiencing accelerating conservation threats because of myriad anthropogenic 
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activities (Dagosta et al., 2020). Worldwide, an average of 30% of freshwater fishes 
are classified under threat categories by the International Union for Conservation of 
Nature (IUCN) Red List (RL) assessments (IUCN, 2020). Extinction risk in much 
of the Neotropics is generally lower than in other continents, where about 10% of 
all continental Brazilian fishes are currently assigned to threatened categories (Reis 
et al., 2016; ICMBio, 2018). Despite commendable efforts, approximately half of all 
NFF currently await IUCN assessment, an expensive, laborious and time-consuming 
process, and many Latin American countries do not have reliable conservation 
information on potentially threatened species. 

The urgency to prioritize species conservation has encouraged the development 
of alternative tools for performing preliminary conservation assessments based on 
geographic and taxonomic information alone (Bachman et al., 2011; Dauby et al., 
2017; Zizka et al., 2020). Recently, efforts have been made in combining IUCN RL 
assessments with species’ traits to assign preliminary extinction risks to not-evaluated 
or data‐deficient species (Bland et al., 2015; Pelletier et al., 2018; Gonzalez-del-Pliego 
et al., 2019; Lughadha et al., 2019). Although body size and functional traits are widely 
known to be correlated with extinction risk in fish faunas (Poff et al., 2012; Kalinkat 
et al., 2017), the relationships among those variables have only recently been studied 
in NFFs (Castro, Polaz, 2020; Tagliacollo et al., 2020). Estimates based on recent rates 
of species discovery suggest that almost 3,000 species of NFF species have yet to be 
formally described by taxonomists (Reis et al., 2016), and hundreds of fish species 
with small adult body size and restricted geographic ranges are already known to be 
threatened with extinction (Castro, Polaz, 2020; Tagliacollo et al., 2020). 

Here we investigate the use of geographic and taxonomic data as a proxy to rapidly 
assess potential conservation threats for species of the NFF species. Specifically, 
we explore whether species geographic ranges, topographic elevation data, and 
publication date are associated with extinction risk using a dataset of 3,001 NFF species 
with threat categories assigned by the IUCN–RL. Furthermore, we use geographic 
coordinates data to generate a preliminary extinction risk assessment for 2,334 NFF 
currently awaiting formal IUCN assessment. We identify data types correlated with 
extinction risk, illustrate geographic distributions of NFF threatened species, predict 
distributions of potentially threatened species, and suggest possible priority areas for 
upcoming conservation assessments. Given the runaway rate of habitat destruction 
and the disproportionately limited resources available for such studies, we provide an 
important tool for urgently-needed conservation of neotropical freshwater fishes. 

MATERIAL AND METHODS

Spatial database. Estimating species ranges for conservation assessment requires 
compiling, organizing, and proofing a comprehensive database with thousands of 
geographic coordinates. We compiled a database of NFF species based on geographic 
information of preserved specimens from the taxonomic literature and museum 
collections, the latter accessible through metadata repositories (e.g., GBIF, FishBase, 
SpeciesLink). After combining specimen occurrences from multiple sources, we applied 
an automated cleaning pipeline (Robertson et al., 2016) to remove duplicates and 
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geographic records with apparent geo-referenced mistakes. This procedure excluded 
incongruent occurrences, such as those placed in the ocean or outside the Neotropics, 
those without precise locality or country names, coordinates along the whole degree 
latitude or longitude (i.e., latitude or longitude exactly zero) or collected on coarse-
scale grid lines without decimal precision. We validated the NFF species distributions 
by plotting maps of individual species and comparing them with those published in 
the primary taxonomic literature. For many taxa, in particular those without range 
maps in the specialized literature, we solicited expert opinions by taxonomists who 
provided additional data points to improve species distributions and suggestions to 
exclude unreliable occurrences. In the absence of published maps or expert opinions, 
we kept only the coordinates of the holotype and paratypes. 

IUCN threat categories. We compiled a list of 3,001 NFF species and their 
respective extinction risks based on assessments using the IUCN criteria and categories 
(IUCN, 2019). This list contains information about species extinction risks from the 
IUCN Red List database (IUCN, 2020), Brazilian Ministry of Environment Red List 
of endangered species (ICMBio, 2018), and Colombian Red List Book (Mojica et al., 
2012). Those extinction risk assessments list recognized species as Least Concern (LC), 
Near Threatened (NT), Vulnerable (VU), Endangered (EN), Critically Endangered 
(CR), and Data Deficient (DD). We changed the threat classification scheme by 

FIGURE 1 | Sample of the phenotypic diversity of Neotropical freshwater fishes. Upper left to lower right: Lycengraulis grossidens (Spix & 

Agassiz, 1829); Hyphessobrycon hexastichos Bertaco & Carvalho, 2005; Geophagus neambi Lucinda, Lucena & Assis, 2010; Crenicichla lepidota 

Heckel, 1840; Trachelyopterus galeatus (Linnaeus, 1766); Anablepsoides xinguensis (Costa, 2010); Abramites hypselonotus (Günther 1868); Pituna 

xinguensis Costa & Nielsen, 2007; Gymnotus cuia Craig, Malabarba, Crampton & Albert, 2018; Apteronotus caudimaculosus de Santana, 2003; 

Colomesus tocantinensis Amaral, Brito, Silva & Carvalho, 2013; Corydoras britskii (Nijssen & Isbrücker, 1983). Species not shown in scale.
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combining the categories Least Concern (LC) and Near Threatened (NT) into a single 
category considered “non-threatened” to match the classification scheme exported by 
the R package ConR (Dauby et al., 2017). 

Variables. We investigated the utility of three variables as proxies for extinction risk 
categorizations recognized by the IUCN–RL. We compiled a list of NFF species from 
William Eschmeyer’s Catalog of Fishes (Fricke et al., 2020), including all 6,226 valid 
NFF species names, publication dates, and synonyms. We replaced all junior synonyms 
in the spatial database with valid names. We sub-sampled this list of publication dates 
to include 5,335 valid species having geographic coordinates in the spatial database, 
including 3,001 NFF species with IUCN–RL extinction risk assessments, and 
additionally 2,334 awaiting IUCN assessment. We discretized the species publication 
dates for the dataset of 3,001 NFF species into 15 intervals, each with approximately 
equal frequency values, including around 200 data points per interval. 

We measured the Extent of Occurrence (EOO) as a proxy for species geographic 
distribution. The intent of the EOO estimates is to measure the degree of extinction 
risks from threatening factors across the taxon’s geographical distribution (IUCN, 
2019). We measured species EOO using coordinates plotted on geographic maps 
projected in the WGS84 coordinate reference system. We calculated the EOO for 
each species in the database as the area in square kilometers of the minimum convex 
polygon encompassing all localities of the species. To avoid overestimating geographic 
ranges, we removed projected regions extending beyond the Neotropical boundaries 
into the oceans. For species with less than three geographic coordinates, we calculated 
the Area of Occupancy (AOO) on a 2 x 2 km grid line (i.e., 4 km2 per coordinate). We 
discretized the species EOOs for the dataset of 3,001 NFF species into 15 range-size 
intervals, each including approximately equal frequency values, including around 200 
data points per interval. 

We assessed differences in elevation of geographic coordinates as a proxy for 
species topographic elevation ranges. For each specimen of every species in the spatial 
database, we gathered elevation estimates using NASA’s Shuttle Radar Topography 
Mission (SRTM) dataset in a Digital Elevation Model (DEM) (Farr et al., 2007). We 
gathered these elevation estimates on geographic maps projected in the WGS84 
coordinate reference system. As before, we discretized species altitude ranges into 15 
elevation intervals, each including approximately equal frequency values, including 
around 5,930 data points per interval. 

Preliminary assessments. We used the R package ConR (Dauby et al., 2017) 
to provide a preliminary conservation assessment for 2,334 NFF species for which 
extinction risks have not been assigned by the IUCN–RL. We used the ConR package 
to assign threat categories to the unclassified species assuming only criterion B, 
specifically sub-criterion B1 (i.e., EOO). This sub-criterion is one of the necessary 
conditions used by the IUCN–RL for classifying species into threat categories. It must 
also apply other conditions when assigning extinction risks properly; e.g., number of 
locations or population fragmentation, continuing decline of species distributions 
or habitat quality, population extreme fluctuations through time (IUCN, 2019). 
However, these conditions are too complex for automated conservation assignments, 
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because they depend on detailed knowledge of species ecology and behavior, habitat 
utilization, and existing actual threats to part or all of the species’ geographic range. 
Preliminary conservation assessments by ConR classified species into Non-threatened 
(Least Concern or Near Threatened), and three threat categories: Vulnerable (VU), 
Endangered (EN), and Critically Endangered (CR). Species with fewer than three 
geographic coordinates received the status of Data Deficient (DD). 

RESULTS

Species occurrences. After verification and validation steps we obtained a database 
of 125,685 unique geographic coordinates for 5,335 species or 83% of the entire 
Neotropical ichthyofauna. Of those, 4,154 species were represented by three or more 
coordinates, with a median of 11 occurrences per species with interquartile range (i.e., 
Q3–Q1) of 26. By taxonomic order, the database included 60,374 (48.0%) occurrences 
for 1,758 characiform species, 32,407 (25.8%) occurrences for 1,964 siluriform species, 
12,262 (9.7%) occurrences for 465 cichliform species, 6,495 (5.2%) occurrences for 
596 cyprinodontiform species, 6,811 (5.4%) occurrences for 258 gymnotiform species, 
and 7,336 (5.8%) for 294 species in the other taxonomic orders. The geographic 
coordinates were heterogeneously distributed throughout most of the Neotropical 
region, with geographic gaps in the Argentinean pampas, a region with a few rivers 
and comparatively lower species density.

IUCN–RL: conservation assessments. We evaluated the extinction risks for 3,001 
NFF species with existing IUCN assessments, including 1,068 Characiformes, 1,106 
Siluriformes, 302 Cyprinodontiformes, 259 Cichliformes, 146 Gymnotiformes, and 
120 species in other taxonomic orders. We identified that about 14% (or 422 out 3,001 
species) of NFF species are under extinction risk, including 176 as VU, 147 as EN, and 
99 as CR. Partitioned by taxonomic order, NFF species are classified by the IUCN-RL 
in threat categories in the following proportions: (i) Characiformes: 8.2% (88 out 1068 
species), including 43 as VU, 36 as EN, and nine as CR; (ii) Siluriformes: 10.8% (119 out 
1106 species), including 41 as VU, 47 as EN, and 31 as CR; (iii) Cyprinodontiformes: 
48.0% (or 145 out 302 species), including 61 as VU, 40 as EN, and 44 as CR; (iv) 
Cichliformes: 10.0% (26 out 259 species), including 14 as VU, 10 as EN, and two as 
CR; (v) Gymnotiformes: 14.9% (21 out 146 species), including 11 as VU, five as EN, 
and five as CR, and (vi) species in other clades: 19.2% (23 out 120 species); including 
six as VU, nine as EN, and eight as CR (Tab. 1; Fig. 2).

Taxonomic and spatial variables. We obtained information on publication dates, 
EOOs, and elevation for 3,001 NFF species with IUCN–RL extinction risks. This 
dataset comprises NFF species published from 1758 to 2016. The Fig. 3 shows general 
trends of relationships among these three variables and extinction risks in NFF species. 

We identified about 33.5% (or 1,007 of 3,001 species) NFF species described in 
a time-interval of 20 years, between 1996 to 2016. Approximately 18.7% (or 188 of 
1,007 species) of these recently described NFF species are classified by the IUCN–RL 
as either VU, EN or CR (Tab. 2). Partitioned by taxonomic order, we verified that 
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FIGURE 2 | Extinction risks in 3,001 Neotropical freshwater fishes (NFF). On average, 14% (422 of 3,001) NFF species are classified by the 

IUCN Red List (RL) as Vulnerable (VU), Endangered (EN) or Critically Endangered (CR). Extinction risks are relatively similar among 

the orders Characiformes (8.2%), Siluriformes (10.8%), Cichliformes (10.0%), and Gymnotiformes (14.9%). An exception is the clade 

Cyprinodontiformes, where about 48% of species are classified as either VU, EN, or CR. LC or NT: Least Concern or Near Threatened; DD: 

Data Deficient.

TABLE 1 | Summary of the IUCN–RL data for 3,001 Neotropical freshwater fish (NFF) species. Threatened = number of threatened NFF 

species. 

Order NFF Threatened %

Characiformes 1068 88 8.2

Siluriformes 1106 119 10.8

Cyprinodontiformes 302 145 48.0

Cichliformes 259 26 10.0

Gymnotiformes 146 21 14.4

Other orders 120 23 19.2

TOTAL 3,001 422 14.1

NFF species described in this 20-year interval are classified by the IUCN–RL in threat 
categories in the following proportions: (i) Characiformes: 11.6% (34 of 294 species), 
including 16 as VU, 12 as EN, and six as CR; (ii) Siluriformes: 15.1% (59 of 390 
species), including 19 as VU, 26 as EN, and 14 as CR; (iii) Cyprinodontiformes: 44.1% 
(67 of 152 species), including 34 as VU, 13 as EN, and 20 as CR; (iv) Cichliformes: 
11.3% (seven of 62 species), including five as VU, and two as EN; (v) Gymnotiformes: 
21.8% (19 of 87 species), including 10 as VU, four as EN and five as CR; and (vi) 
species in other clades: 9.1% (two of 22 species), including two as EN (Tab. 2). 
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FIGURE 3 | Association among three variables and extinction risks in 3,001 Neotropical freshwater fishes (NFF). A. IUCN-Red List (RL) 

threat categories by species description dates. B. Species description dates by taxonomic orders. C. IUCN-RL categories by geographic 

ranges. D. Geographic ranges by taxonomic orders. E. IUCN-RL categories by elevation ranges. F. Elevational ranges by taxonomic orders. 

Threatened status are usually higher for recently described NFF species, those inhabiting narrow geographic ranges, and those confined to 

upland river drainages. CR: Critically Endangered; EN: Endangered; VU: Vulnerable; DD: Data Deficient.

TABLE 2 | Summary of the IUCN–RL data for 1,007 NFF species described in a 20–year interval, from 1996 to 2016. 

Publ. dates: 1996–2016

Order NFF Threatened %

Characiformes 294 34 11.6

Siluriformes 390 59 15.1

Cyprinodontiformes 152 67 44.1

Cichliformes 62 7 11.3

Gymnotiformes 87 19 21.8

Other orders 22 2 9.1

TOTAL 1,007 188 18.7
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We estimate 44.5% (1,337 of 3,001 species) of NFF species have an EOO under 
20,000 km2. Approximately 27.9% (373 of 1,337 species) of these NFF species with 
EOOs under 20,000 km2 are classified by the IUCN–RL as either VU, EN or CR 
(Tab. 3). Partitioned by taxonomic order, NFF species with EOO estimates of less 
than 20,000 km2 are classified by the IUCN–RL in threat categories in the following 
proportions: (i) Characiformes: 21.8% (70 of 321 species), including 33 as VU, 29 as 
EN and eight as CR; (ii) Siluriformes: 18.6% (106 of 570 species), including 34 as 
VU, 44 as EN and 28 as CR; (iii) Cyprinodontiformes: 52.7% (138 of 262 species), 
including 55 as VU, 39 as EN and 44 as CR; (iv) Cichliformes: 22.1% (21 of 95 species), 
including 13 as VU, seven as EN and one as CR; (v) Gymnotiformes: 37.2% (19 of 51 
species), including 10 as VU, four as EN and five as CR; and (vi) species in other clades: 
50% (19 of 38 species), including three as VU, nine as EN and seven as CR (Tab. 3). 

We obtained elevation data from 88,977 geographic coordinates, ranging from -42 
to 4,910 meters elevation. Dividing this elevation range by interquartile, we showed 
that species in upland river systems above 253.00 meters are more often classified by 
the IUCN–RL in threat categories (Tab. 4). Approximately 23.6% (217 of 918 species) 
of the NFF species with median altitudes ranging between 253.0–4911.0 m (Q4) are 
classified by the IUCN–RL as either VU, EN or CR (Tab. 4). Partitioned by taxonomic 
order, NFF species with median altitudes ranging between 253.0 - 4911.0 meters (Q4) 
are classified by the IUCN–RL in threat categories in the following proportions: (i) 
Characiformes: 14.9% (47 of 316 species), including 24 as VU, 17 as EN and 6 as CR; 
(ii) Siluriformes: 17.8% (73 of 409 species), including 27 as VU, 26 as EN and 20 as CR; 
(iii) Cyprinodontiformes: 60% (73 of 121 species), including 36 as VU, 24 as EN and 
13 as CR; (iv) Cichliformes: 17.5% (seven of 40 species), including 40 as VU and three 
as CR; (v) Gymnotiformes: 41.2% (six of 17 species), including one as VU, four as EN 
and one as CR; and (vi) species in other clades: 73.3% (11 of 15 species), including two 
as VU, four as EN and five as CR (Tab. 4).

TABLE 3 | Summary of the IUCN–RL data for 1,337 NFF species with geographic range estimates less than 20,000 km2. EOO = Extent of 

Occurrence.

Geographic ranges: EOO < 20,000 km2

Order NFF Threatened %

Characiformes 321 70 21.8

Siluriformes 570 106 18.6

Cyprinodontiformes 262 138 52.7

Cichliformes 95 21 22.1

Gymnotiformes 51 19 37.2

Other orders 38 19 50.0

TOTAL 1,337 373 27.8
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ConR: preliminary conservation assessments. The R package ConR generated 
preliminary conservation assessments for 2,334 NFF species awaiting IUCN 
assessments, including 858 Siluriformes, 690 Characiformes, 294 Cyprinodontiformes, 
206 Cichliformes, 112 Gymnotiformes, and 174 species in other orders. We verified 
in this preliminary survey that about 28.7% (671 of 2,334) species were considered 
under potential extinction risk, including 301 as VU, 346 as EN, and 24 as CR (Tab. 
5). Partitioned by taxonomic order, we verified that NFF species are assigned by the 
ConR package in threat categories in the following proportions: (i) Characiformes 
30.4% (210 of 690 species), including 97 as VU, 106 as EN, and seven as CR; (ii) 
Siluriformes: 29.2% (251 of 858 species), including 109 as VU, 130 as EN, and 12 as 
CR; (iii) Cyprinodontiformes 30.9% (91 of 294 spp.), including 40 spp. as VU, 49 spp. 
as EN, and two spp. as CR; (iv) Cichliformes: 26.2% (54 of 206 spp.), including 25 spp. 
as VU, 27 spp. as EN, and two spp. as CR; (v) Gymnotiformes 32.1% (36 of 112 spp.), 
including 14 spp. as VU, 21 spp. as EN, and one as CR; and (vi) species in other clades: 
16.6% (29 of 174 spp.), including 16 spp. as VU, and 13 spp. as EN (Tab. 5). 

TABLE 4 | Summary of the IUCN–RL data for 3,001 NFF species, with estimates of median elevation within interquartile ranges. Thr = 

Threatened species.

Q1 Q2 Q3 Q4

 -42.0 : 42.0 m 42 : 105.0 m 105.0 : 253.0 m 253.0 : 4910.0 m

Order NFF Thr % NFF Thr % NFF Thr % NFF Thr %

Characiformes 112 11 9.8 358 10 2.8 282 20 7.1 316 47 14.9

Siluriformes 179 15 8.4 277 17 6.1 241 14 5.8 409 73 17.8

Cyprinodontiformes 89 43 48.3 40 14 35.0 52 15 28.8 121 73 60.3

Cichliformes 60 5 8.3 94 10 10.6 65 4 6.2 40 7 17.5

Gymnotiformes 57 6 10.5 50 6 12.0 22 3 13.6 17 6 35.3

Other orders 46 5 10.9 47 5 10.6 12 2 16.7 15 11 73.3

TOTAL 543 85 15.7 866 62 7.2 674 58 8.6 918 217 23.6

Order NFF Threatened %

Characiformes 690 210 30.4

Siluriformes 858 251 29.3

Cyprinodontiformes 294 91 31.0

Cichliformes 206 54 26.2

Gymnotiformes 112 36 32.1

Other orders 174 29 16.7

TOTAL 2,334 671 28.7

TABLE 5 | Summary of the ConR preliminary conservation assignments for 2,334 NFF species.
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DISCUSSION

Threat status in NFF species. The Neotropical ichthyofauna is among the most 
diverse on Earth, with published estimates of more than 9,000 species or about 14% 
of all vertebrate species. This diversity of NFF species is dominated by three orders 
of ostariophysan fishes (Characiformes, Siluriformes, and Gymnotiformes) and two 
orders of acanthomorph fishes (i.e., Cichliformes, Cyprinodontiformes). This study 
suggests that ca. 14%, or about one species in seven, of all NFF species are under some 
level of extinction risk (Fig. 2). The estimated 14% of threatened NFF species is lower 
than corresponding figures for the freshwater ichthyofauna in other continents; e.g., 
about 37% in Europe (Freyhof, Brooks, 2011), 27% in North America (IUCN, 2020), 
and 22% in Africa (Snoeks et al., 2011). However, absolute numbers are alarming with 
422 species at extinction risk (Tab. 1) and it will certainly increase because nearly half 
of all NFF species are still awaiting IUCN assessment. The extinction risk is similar 
among ostariophysans and cichliform species, with an average of 11.0% of species 
assigned to threat categories, but cyprinodontiform killifishes are at much greater risk, 
with nearly 48% of species in threat categories (Tab. 1). Cyprinodontiformes include 
a high proportion of small-bodied species living in seasonal pools and other ephemeral 
aquatic habitats, with narrow geographic distributions within hydrologically isolated 
upland and coastal river basins (Fig. 3D), often in areas of the Brazilian shield with 
high human impact (Costa, 2019). These features place killifishes among the most 
vulnerable vertebrates in the Neotropical region (Costa, 2016; Costa, 2019).

Predictor variables of extinction risks. To evaluate species’ extinction risks, the 
IUCN-RL uses a standardized protocol with a widely-accepted set of criteria (IUCN, 
2019). This assessment is a laborious and time-consuming process based on experts’ 
opinions and data that are not readily available for many taxonomic groups. The 
urgency to prioritize species conservation of threatened ecosystems has motivated the 
use of alternatives for speeding conservation assessments, by identifying geographic 
regions and species traits linked to higher extinction risks (Bland et al., 2015; Gonzalez-
del-Pliego et al., 2019). Our findings support the longstanding view that geographic 
range size is a predictor of extinction risk (Purvis et al., 2000; Poff et al., 2012), and 
also more recently hypothesis that threatened status is, to some degree, associated with 
elevation gradients (Reis et al., 2016) and species’ publication date (Tagliacollo et al., 
2020) (Fig. 3). 

Biodiversity patterns seen here for NFF resembles those of most biotas on Earth, in 
being characterized by a highly-skewed frequency distribution of organisms among 
species, in which most individuals are members of just a few highly abundant species 
(>80% measured as numbers of individuals). Some argue that conservation efforts 
should prioritize ecologically dominant species that are purported to perform most 
of the current ecosystem functions (e.g., Gaston, Fuller, 2008; Winfree et al., 2015). 
This is a shortsighted strategy from both ecological and evolutionary perspectives. 
Some less abundant species (e.g., top predators, ecosystem engineers) contribute 
disproportionately to the functional structure of species assemblages (Leitão et al., 
2016; Jousset et al., 2017). Other species are spatially structured so that they are only 
less abundant locally, despite being geographically widespread (Violle et al., 2017). 
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In general, less abundant species often buffer ecosystem resilience to disturbance by 
providing stabilizing functional redundancy (Lyons et al., 2005; Mouillot et al., 2013; 
Dee et al., 2019). Although the functional diversity of NFFs is still poorly documented, 
preliminary studies show it is greater than other freshwater faunas (Su et al., 2019). 

This study estimates that 44.5% (1,337 of 3,001 species) of NFF species have an 
EOO smaller than 20,000 km2, which is an area equivalent to a square land parcel just 
213 km on each side (Tab. 1; Fig. 3D). Like all species, freshwater fishes have particular 
habitat requirements (e.g., large river channels, floodplain lakes, rainforest streams, etc.) 
with specialized ecological and physiological traits, and therefore most NFF species 
occupy only a fraction of the theoretical maximum amount of aquatic habitat, with 
many species occupying a tiny spatial footprint of less than 100 km2 of aquatic habitat, 
equivalent to a parcel less than 10 km on a side. 

The effect of geographic range size on extinction risk varies both by region and 
among taxa. Fish diversity is often correlated with forest cover at a regional scale, 
although this pattern is more heterogeneous at more local scales (Lo et al., 2020). Both 
paleontological and macroecological studies have shown that geographic range is often 
the most important predictor of long-term evolutionary survival (Harnik et al., 2012; 
Toledo et al., 2014; Foote et al., 2016; Longrich et al., 2016). These conclusions suggest 
that current reductions in geographic range size will lead to pronounced increases in 
long-term extinction risk even if local populations are relatively large and stable at 
present. Such a pattern is even more critical for groups whose distributions are already 
naturally restricted, as seen in Cyprinodontiformes (Tab. 3; Fig. 3D).

The diverse NFF resembles that of other continents in exhibiting pronounced 
elevation biodiversity gradients, with greatest species richness in the lowlands below 
about 250 meters (Oberdorff et al., 2011; Costa et al., 2018; Albert et al., 2020b). This 
elevation-diversity gradient is part of a larger core-periphery biodiversity pattern 
observed in South American freshwater fishes, with higher species richness and lower 
percent endemism in lowland basins of the continental core (i.e., Amazon-Orinoco 
lowlands) and lower species richness and higher percent endemism in upland basins 
of the continental periphery (e.g., Shields and Andes) (Albert et al., 2011b; Dagosta, de 
Pinna, 2019; Oberdorff et al., 2019). Similar core-periphery patterns of species richness 
and percent endemism are also observed in many groups of South American plants 
(Ramírez-Barahona et al., 2011; Antonelli et al., 2018), frogs (Vasconcelos et al., 2019), 
and snakes (Azevedo et al., 2020). 

Our results suggest that extinction risks for NFF species are higher in upland rivers 
at the continental periphery (Fig. 3E; Fig. 4). About 23.6% of species at an elevation 
above 253.0 meters are recognized as threatened species by the IUCN-RL (Tab. 4). As 
noted above, many cyprinodontiform species are at higher extinction risk in uplands 
areas at the continental periphery, including regional species flocks in the Altiplano 
(e.g., Orestias; Guerrero-Jiménez et al., 2017), Central America (e.g., Goodeidae; Foster, 
Piller, 2018), and Mata Atlântica (e.g., Nematolebias; Costa et al., 2014). Although 
phenotypic specialization is often thought to promote adaptive diversification (Petren 
et al., 2005; Seehausen, 2006; Pinto et al., 2008), the specializations of many NFF 
species to specific habitat types in upland rivers (e.g., waterfalls, torrential hill streams) 
potentially constrain their elevational and geographic distributions. Therefore the 
same traits that may contribute to higher local species richness may be disadvantageous 
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for survival in environments affected by humans (Ceretta et al., 2020). Although the 
aggregated effects of ecological and physiological constraints on elevation distributions 
in NFF species are poorly understood, it is likely that restricted geographic ranges, 
habitat availability, and habitat connectivity all strongly contribute to the threatened 
status of NFF species in upland rivers (Lanés et al., 2014; Silva et al., 2015).

We found that the dates of NFF species’ publications are associated with extinction 
risks, in which more recently described species are assigned to higher threat categories 
by the IUCN–RL (Fig. 3). This association is most apparent in Cyprinodontiformes, 
with about 44% of species described in a 20–year interval from 1996 to 2016 (Tab. 2; Fig. 
3). As in other taxonomic groups (e.g., birds, mammals), NFF species with widespread 
geographic distributions and/or high local abundances are often described earlier in 

FIGURE 4 | Collection points for 442 threatened Neotropical freshwater fishes (NFF). Threatened NFF species classified by the IUCN Red 

List (RL) are often distributed in the upland rivers of the Brazilian Shield and the Colombian Andes, and coastal Atlantic and Caribbean 

drainages. CR: Critically Endangered; EN: Endangered; VU: Vulnerable; DD: Data Deficient. Data for 4,412 localities with geographic 

coordinates.
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the discovery process, and these species therefore also suffer lower extinction risk. In 
contrast, range-restricted species, often located in remote areas or unusual habitats of 
South America, are only recently being collected and described by ichthyologists (e.g., 
Akawaio penak Maldonado-Ocampo, López-Fernández, Taphorn, Bernard, Crampton 
& Lovejoy, 2014, and Tarumania walkerae de Pinna, Zuanon, Rapp Py-Daniel & Petry, 
2017), and we generally have much less knowledge about their actual geographic and 
ecological ranges. 

Using recent rates of species discovery and description, studies have forecast that 
about ca. 3,000 NFF species remain to be described (Reis et al., 2016, and reference 
therein). Results from this study indicate that most of these “yet-to-be-described” NFF 
species will be range-restricted, potentially threatened, and possibly data deficient on 
arrival. This is obviously a large and alarming number, which potentially exceeds the 
total number of (breeding) Neotropical birds (ca. 2,250 species; Rahbek et al., 2007), 
or the total number of obligate freshwater fish species in North America and Europe 
combined (ca. 1,460 species). The highly endemic spatial structure of Neotropical 
fishes means this fauna is vulnerable to mass extinction due to anthropogenic activities 
(Pelicice et al., 2017; Bezerra et al., 2019; Grasel et al., 2019). 

Distribution range sizes of threatened NFFs species. Threatened NFF species 
are often distributed in upland rivers at the continental periphery (Fig. 4). In general, 
such species include those described decades ago with range-restricted distributions 
in the Brazilian Shield and the Colombian Andes, and coastal Atlantic and Caribbean 
drainages (Fig. 5). Higher concentration of threatened species in Colombia and Brazil, 
and a few species in other Latin American countries, is explained by the efforts of those 
two countries in generating national lists of threatened species in accordance with 
IUCN protocols (Mojica et al., 2012; ICMBio, 2018). NFF species in those aquatic 
environments are under higher extinction risks due to increasing threats caused by, 
among other things, expansion of agriculture (Rosa et al., 2020), implementation of 
hydropower plants (Finer, Jenkins, 2012), and urbanization (McKinney, 2006).

The amount of land surface area converted to agricultural activities varies substantially 
by region, but across the Neotropics natural vegetation cover is being removed to 
support human demands for commodities like soy, corn, palm oil, among others (Pütz 
et al., 2014). The conversion of natural lands to agriculture fields has been increasing 
in recent years with tropical forests, savannas and temperate forest being the most 
affected areas (Poorter et al., 2016). Agriculture activities can have a significant impact 
on freshwater ecosystems due to the flowing of fertilizers, herbicides and pesticides 
into rivers affecting the ecology of aquatic organisms and imposing threat on fish 
populations already under extinction risk (Albert et al., 2020a). 

Hydroelectric dams impose other threats to NFF species, by transforming rivers into 
reservoirs leading to the extirpation of rheophilic species and collapse of migratory 
fish populations (Winemiller et al., 2016; Hrbek et al., 2018). Besides changes in 
environmental landscapes, hydropower plants modify the hydrological regime 
downstream, disturbing seasonal reproductive, feeding cycles, and migratory routes 
(Helfman, 2007). Small capacity dams have proliferated across the South America 
continent blocking headwater streams in upland regions (Grill et al., 2019). Brazil 
alone has built close to 500 small dams and many other projects are pending licensing 
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by the national agency of energy production (ANEEL, 2015). As a consequence, the 
connectivity of fish populations in headwater river systems have been fragmented, 
preventing faunal movements and the expansion of geographic ranges. 

Worldwide about 1.7 billion people live in cities that draw water from freshwater 
ecoregions of high biodiversity value (Abell et al., 2019). Some of the largest Brazilian 
metropolitan areas lie at the headwaters of large tropical river basins. For example, the 
São Paulo greater metropolitan area (ca. 23.4 million people) strides the headwaters of 
the Tietê River, Brasília (ca. 4.3 million people) the headwaters of the Tocantins, São 
Francisco and Paraná Rivers, Belo Horizonte (ca. 2.7 million people) at headwaters of 
the das Velhas River (largest tributary of the São Francisco River), Curitiba (ca. 1.9 
million people) at headwaters of the Iguaçu River, and Cuiabá (ca. 600,000 people) 
at headwaters of the Cuiabá River (major tributary of the Paraguay River). Outside 
of Brazil, there are examples of the same pattern in Colombia: metropolitan areas of 
Medellín (ca. 3.7 million people) and Cali (ca. 2.3 million people) at the headwaters 
of the Cauca-Magdalena River, and Barranquilla (ca. 2 million people) at its mouth. 
These large cities significantly reduce both the quality and quantity of water flowing 
downstream, from the combined effects of water withdrawals that lower the regional 
water table, and water pollution from urban and agricultural runoff, as well as industrial 
and residential sewage effluents. Finally, human footprint on aquatic resources from 
these and other cities throughout Latin America is expected to rise dramatically in 
coming years, with projected increases both in absolute numbers of people and per 
capita consumption of water, energy, food and other resources (Hoekstra, Mekonnen, 
2012; Mekonnen, Gerbens-Leenes, 2020). 

Additional impacts are projected in Atlantic coastal drainages, as more seashore 
and coastal estuaries are converted to urban and agricultural landscapes, affecting the 
quantity and quality of freshwater habitats in these areas with high local fish endemism 
(Camelier, Zanata, 2014; Bertaco et al., 2016; Hughes et al., 2020; Silva et al., 2020). 
Urbanization has distinct patterns in the Neotropics, with remote regions in, e.g., the 
Western Amazon, Guianas and Altiplano having the lowest fraction of land converted 
to urban or agricultural purposes, at least to date. However, the southeast Atlantic, 
Maracaibo-Caribbean and Eastern Atlantic regions have suffered the highest degree 
of urbanization (Gwynne, 2017), pressuring biotas with the highest concentration of 
threatened species in the Neotropics.

Distribution range sizes of potentially threatened NFF species. This study 
generated preliminary conservation assessments using EOO for 2,334 NFF species 
currently awaiting IUCN assessment, identifying an additional 671 NFF species as 
potentially threatened. This number represents 29% of NFF species currently lacking 
IUCN assessment. With 422 species currently on the IUCN RL, and the addition 
of 671 species suggested by the ConR package, the total number of threatened or 
potentially threatened Neotropical freshwater fish species has risen to 1,093 species, or 
about 18% of all species in the fauna. 

Geographic range is widely regarded as an important predictor of extinction risk in 
freshwater taxa (Olden et al., 2010; Collen et al., 2014). The ConR package integrates 
information on species geographic data to calculate EOOs and compute IUCN 
threatened categories without explicit locations (sensu IUCN, 2019) that may affect 
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species’ spatial ranges. A location is defined by the IUCN guidelines as a geographically 
or ecologically distinct area in which a single threatening event can rapidly affect all 
individuals of the taxon. Thus, the ConR provides a preliminary solution to estimate 
species conservation threat status without detailed information (e.g., locations) required 
to achieve complete IUCN–RL status. We applied ConR to generate a data-driven 
baseline to identify potentially threatened species and their geographic ranges in the 
Neotropical region. We stress the ConR package is not at all intended to replace the 
IUCN Red Listing assessments; rather, it aims to assist and facilitate this process by 
red-flagging potentially threatened species and geographic areas. ConR estimates of 
threat status must be determined carefully, and the flagged species must be understood 

FIGURE 5 | Collection points for 442 threatened Neotropical freshwater fishes (NFF) colored by elevation and sized by species' description 

year. Threatened NFF species are often those described decades ago, with range-restricted distributions in the upland rivers of the 

Brazilian Shield and the Colombian Andes, and coastal Atlantic and Caribbean drainages. CR: Critically Endangered; EN: Endangered; VU: 

Vulnerable; DD: Data Deficient (gray). Data for 4,412 localities with geographic coordinates.

https://www.ni.bio.br/
https://www.scielo.br/ni


Extinction risk in Neotropical freshwater fishes

Neotropical Ichthyology, 19(3): e210079, 202118/26 ni.bio.br | scielo.br/ni

as potentially threatened which may be endangered in the presence of environmental 
threats. 

ConR reveals that potentially threatened NFF species are often restricted to single 
river basins located outside protected areas at high altitudes of the northern, central 
and southern Andes, and Eastern Guiana Shield (Fig. 6). These highland regions in the 
Neotropics are relatively species-poor, comprising less than 30.6% of the Neotropical 
ichthyofauna inhabiting river drainages above 253.0 meters (Tab. 4). The low 
diversity contrasts with the high endemism in both the Andean Cordillera (Schaefer, 
2011) and Eastern Guiana Shield (Lujan, Armbruster, 2011), which encompasses an 
ichthyofauna comprised of relictual lineages with specialized phenotypes. Potentially 
threatened species along the Andean Cordilleras includes emblematic species in the 
Chilean ichthyofauna (e.g., the catfishes Diplomystes and Nematogenys (Guichenot, 
1848)), climbing catfishes (Astroblepus) in Peru, Ecuador and Colombia, and Altiplano 
killifishes (Orestias) in Lake Titicaca, to mention a few. The isolated Brazilian coastal 
drainages and the Guiana Shield also harbor a disproportionate number of low-
diversity fish clades (i.e., with few species), but which represent long phylogenetic 
branches (i.e., relatively early-branching) within all the major taxonomic orders; e.g., 
Conorhynchus conirostris (Valenciennes, 1840), Delturus, Lithogenes, Trichogenes and 
Wertheimeria maculata Steindachner, 1877 (Siluriformes), Hollandichthys, Lignobrycon 
myersi (Miranda Ribeiro 1956), Mimagoniates, Nematocharax, and Spintherobolus 
(Characiformes), Akawaio penak and Japigny kirschbaum Meunier, Jégu & Keith, 
2011 (Gymnotiformes), Guianacara and Mazarunia (Cichliformes), and Nematolebias 
(Cyprinodontiformes). Peripheral basins in the Guiana Shield have been proposed as 
museums of diversity where lineages have resisted extinction for many millions of 
years (Albert et al., 2011b). The unique ichthyofaunas of the South American uplands 
are centers of taxonomic and phylogenetic diversity (Faith, 1992; Magurran, 2013), 
and important biodiversity measures should be considered by policy makers when 
developing conservation actions (Strecker et al., 2011; Li et al., 2020).

The upland reaches of large Amazonian tributaries draining the central Brazilian 
Shield are also important centers of threatened freshwater fish species; e.g., the upper 
Aripuanã, Juruena, Teles Pires, and Iriri Rivers. That region concentrates species 
highlighted by the ConR package as potentially Critically Endangered (CR) including 
highly specialized rheophilic lineages; e.g., Gymnotus Lamontianus (Gymnotiformes), 
Baryancistrus longipinnis (Kindle 1895), Scobinancistrus (Siluriformes), Rhinopetitia, 
Leporinus tristriatus Birindelli & Britski, 2013, Sartor, Ossubtus, Utiaritichthys 
(Characiformes), Retroculus, Teleocichla (Cichliformes). That portion of the northern 
Brazilian Shield is a high conservation priority for freshwater fishes, as a region of high 
endemism, few protected areas and numerous planned or existing hydropower dams 
(Winemiller et al., 2016; Dagosta et al., 2020). This region is also the focus of intense 
deforestation along the expanding agricultural frontier of the Brazilian uplands (Spera 
et al., 2016). The analysis also highlights the occurrence of some potentially threatened 
species in drainages near the South American Atlantic margin, with emphasis on the 
Iguaçu River (Daga et al., 2016) and Uruguay River (Bertaco et al., 2016). The latter 
two basins belong to the most threatened Brazilian biome, the Mata Atlântica, and are 
located close to large urban centers.
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Concluding remarks. Continental freshwaters support diverse but fragile 
ecosystems that are widely imperiled by human activities. The conservation status of 
many freshwater fishes will benefit by prioritizing geographic areas with the largest 
number of coexisting and threatened species (Jézéquel et al., 2020; Leal et al., 2020). 
Hundreds of fishes with smaller adult body sizes and restricted geographic ranges are 
known to be threatened with extinction (Castro, Polaz, 2020). This study verifies that 
often threatened NFF species were recently described, are range-restricted, and are 
confined to certain upland portions of the Brazilian Shield and Northern Andes and to 
lowland portions of the Brazilian and Caribbean coastal drainages. Based on the ConR 
preliminary assignment estimates for NFF species, we estimate that about 29% of the 
species awaiting extinction risk assessments are potentially threatened. These potentially 
threatened NFF species are more commonly located outside formally protected 

FIGURE 6 | Collection points for 671 potentially threatened Neotropical Freshwater Fishes (NFF). Potentially threatened NFF species 

predicted by the ConR package using EOO estimates are usually distributed outside protected areas (e.g., national parks, indigenous lands: 

green) and more often located in the upland rivers of the northern, central and southern Andes, and Eastern Guiana Shield. CR: Critically 

Endangered; EN: Endangered; VU: Vulnerable; LC or NT: Least Concern or Near Threatened; DD: Data Deficient. Data for 4,412 localities 

with geographic coordinates. Protected areas (green) from: https://www.protectedplanet.net. 
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areas (Azevedo‐Santos et al., 2019; Dagosta et al., 2020) in the Central and Southern 
Andes and Eastern Guiana Shield. Our results expand the number and geographic 
distribution of threatened NFF species from 422 species currently on the IUCN RL 
to 1,093 threatened or potentially threatened, representing about 18% of all described 
NFF species. Therefore, conservation efforts directed towards Neotropical aquatic 
biodiversity must prioritize habitats in uplands and coastal lowlands, particularly in 
the Andean Cordilleras, South American shields, and Brazilian and Caribbean coastal 
drainages. Rivers of the Central and Southern Andes, and Eastern Guiana Shield should 
be prioritized in the upcoming IUCN RL assessments for NFF species conservation 
efforts.
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