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The structure of freshwater assemblages may be driven directly by urbanization 
or indirectly by a reduction in environmental heterogeneity (EH). Disentangling 
the effects of urbanization and EH requires uncorrelated proxies of each of these 
factors. We assessed the effects of the degree of urbanization and EH on the 
structure of fish assemblages. We sampled fish in 45 streams located in the urban 
area of Cuiabá. We assessed the effects of urbanization and EH on rarefied fish 
species richness (Srarefied), the local contribution to beta diversity (LCBD), and 
composition with linear models and distance-based redundancy analysis. Our 
indexes of urbanization and EH were not correlated. We found that both Srarefied 
and the LCBD decreased with an increasing degree of urbanization, but were 
not associated with EH. We also noted that few native fish species abundances 
were associated with the EH. Serrapinnus microdon, S. calliurus, Hemigrammus 
tridens, and Astyanax lacustris were abundant in streams with a lower degree of 
urbanization. The non-native Poecilia reticulata was more abundant in streams 
with a higher degree of urbanization. Our results highlight that urbanization 
leads in negative impacts on fish assemblages, such as decreases in diversity and 
the dominance of non-native species.

Keywords: Diversity, LCBD, Midwestern Brazil, Rarefaction, Species 
composition.
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A estrutura de assembleias de água doce pode ser influenciada diretamente pela 
urbanização ou indiretamente por reduções em heterogeneidade ambiental 
(HA). Para separar os efeitos da urbanização dos da HA, variáveis substitutas a 
esses processos precisam ser não-correlacionadas. Avaliamos os efeitos do grau 
de urbanização e HA na estrutura das assembleias de peixes. Amostramos peixes 
em 45 riachos localizados na área urbana de Cuiabá.  Avaliamos  os efeitos da 
urbanização e HA na riqueza rarefeita de espécies de peixes (Srarefeita), contribuição 
local para a diversidade beta (LCBD) e composição de espécies utilizando modelos 
lineares e análise de redundância baseada  em  distância. Nossos índices de 
urbanização e HA não foram correlacionados. Observamos que tanto a Srarefeita 
e a LCBD diminuíram com aumentos no grau de urbanização, mas não foram 
correlacionadas com a HA. Também observamos que as abundâncias de poucas 
espécies de peixes nativos correlacionaram-se com HA. Serrapinnus microdon, 
S. calliurus, Hemigrammus tridens e Astyanax lacustris foram mais abundantes 
em riachos com menor grau de urbanização. A não-nativa Poecilia reticulata foi 
mais abundante em riachos com maior grau de urbanização. Nossos resultados 
destacam que a urbanização resulta em impactos negativos nas assembleias de 
peixes, tais como reduções da diversidade e a dominância de espécies não-nativas.

Palavras-chave: Centro-Oeste brasileiro, Composição de espécies, Diversidade, 
LCBD, Rarefação.

INTRODUCTION

The Anthropocene is characterized by an overwhelming global anthropogenic impact 
that degrades nature and drives increases in species extinction rates (Callisto et al., 2019; 
Casarim et al., 2020). Urbanization is a process that includes the progressive occupation 
of the natural landscape by cities, resulting from an increase in human population growth 
(Seto et al., 2012; Alberti, 2015). This process of occupation includes the removal of 
native vegetation cover, stream channelization, increases in the amount of impervious 
surfaces, and the input of untreated sewage, among other habitat disturbances (Booth 
et al., 2016).

There is a growing body of evidence that the altered physical, chemical, and biological 
conditions in urban environments affect the integrity of aquatic biota, particularly fish 
assemblages, by changing the trophic dynamics, diversity, and composition of species 
assemblages (e.g., Eklöv et al., 1998; Cunico et al., 2006; Ferreira, Casatti, 2006; Felipe, 
Súarez, 2010; Gebrekiros, 2016; Prado et al., 2020). For example, Meador (2020) observed 
that fish species loss increased with the proportion of urban land use, due to herbicides 
and insecticides. Variability in species composition (beta diversity) also tends to be 
lower in streams under greater urbanization influence, with assemblages dominated 
by disturbance-tolerant species (Bliss et al., 2017; Bourassa et al., 2017; Meador, 2020). 
An increase in urbanization often involves the replacement of riparian vegetation by 
urban structures (Groffman et al., 2003, 2014), which modify physical and chemical 
factors and reduce habitat availability in aquatic environments, leading to changes in 
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the structure of their biological communities (e.g., Thompson, Parkinson, 2011; Yirigui 
et al., 2019). This systematic degradation of ecological conditions of streams in urban 
regions is described as “urban stream syndrome” (Walsh et al., 2005). The effects of 
urbanization can negatively affect alpha and beta diversity of fish assemblages (Borges et 
al., 2020). These negative effects may occur because habitat modification and pollution 
in urban areas filter out more sensitive species from local assemblages, leading to biotic 
homogenization in the regional pool (McKinney, 2006; Hewitt et al., 2010; Borges et 
al., 2020).

Urbanization can degrade stream habitats at multiple scales (Engman, Ramírez, 
2012). Several studies support the idea that interactions between catchment-scale 
(physiographic), riparian corridor, and stream-scale environmental variables should be 
considered to best evaluate the anthropogenic effects on fish assemblages (e.g., Engman, 
Ramírez, 2012; Marzin et al., 2013; see also Czeglédi et al., 2020, on conflicting results). 
At small spatial scales, environmental heterogeneity has been demonstrated to be more 
consistently and strongly correlated with fish assemblage structure (e.g., Engman, 
Ramírez, 2012 and references therein). There is growing evidence of a positive 
relationship between environmental heterogeneity and beta diversity, which indicates 
that as the environmental dissimilarity between sites increases, so does the taxonomic 
divergence (López-Delgado et al., 2020). Functional and phylogenetic dissimilarities of 
fish fauna from streams also show this pattern (Roa-Fuentes et al., 2019). This suggests 
that streams with higher environmental heterogeneity offer a larger variety of suitable 
environmental conditions for different species (Heino et al., 2014). Positive correlations 
between environmental heterogeneity and beta diversity have been observed for 
different aquatic taxa, such as macroinvertebrates, diatoms (Rouquette et al., 2013) 
and fish (Bourassa et al., 2017), even within an urbanized watershed. Reductions in 
environmental heterogeneity (environmental homogenization) can increase the 
dominance of generalist and opportunistic species and enable the invasion of exotic 
species, leading to the loss of native species (Marchetti et al., 2006; Araújo et al., 2009; 
Cruz, Pompeu, 2020). Thus, environmental homogenization can reduce biodiversity 
via impacts on local species richness and beta diversity (Hewitt et al., 2010).

While urbanization and environmental heterogeneity may be related to independent 
environmental factors, they can be intertwined depending on the spatial scale (Groffman 
et al., 2014) and the way environmental heterogeneity is measured (Stein, Kreft, 2015). 
At large spatial scales, urbanization reduces environmental variability, replacing the 
natural environment with a common urban ecosystem and causing the environment 
and biota of two disparate regions (even those from different biomes) to reach similar 
conditions (e.g., McKinney, 2006; Groffman et al., 2014). However, within urban 
watersheds, there is environmental variation related to the differences in the presence 
or quantity of urban structures (areas with non-vegetated cover and the predominance 
of artificial structures, such as streets, roads, highways and buildings; Souza et al., 
2020) around streams (e.g., Rouquette et al., 2013; Bourassa et al., 2017). Furthermore, 
environmental heterogeneity is a broad ecological concept covering several types of 
variables (for a comprehensive review, see Stein, Kreft, 2015). When urbanization 
drives local environmental homogenization, chemical variables and some physical 
variables, particularly those describing habitat structure, are often homogenized. Thus, 
to disentangle the effects of urbanization and environmental heterogeneity, one would 
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need uncorrelated surrogates of both of these ecological factors.
In this study, we disentangle the effects of urbanization and environmental 

heterogeneity on stream fish assemblages by using uncorrelated surrogates of variables 
related to these factors. We tested the hypothesis that increases in urbanization and 
environmental heterogeneity (EH) would have opposing effects on the structure of fish 
assemblages. We assessed this hypothesis with the predictions that (i) increases in the 
proportion of impervious surfaces (a proxy for urbanization) would decrease rarefied 
fish species richness and local contribution to beta diversity. This may occur because 
the degradation in stream environmental conditions due to urbanization excludes fish 
species sensitive to disturbances from local communities (Bliss et al., 2017; Bourassa et 
al., 2017; Meador, 2020), which would reduce species richness and increase similarity 
in species composition. Furthermore, (ii) increases in environmental heterogeneity 
would increase rarefied fish species richness and local contribution to beta diversity. 
This expectation is justified because habitats with higher environmental heterogeneity 
provide resources and conditions suitable for a higher number of different species (Tews 
et al., 2004; Engman, Ramírez, 2012; Heino et al., 2014). We further expected that 
streams with similar levels of impervious surfaces and EH would have similar fish species 
compositions.

MATERIAL AND METHODS

Study area. The study was carried out in urban streams distributed throughout the 
22,851.10 km2 area of the city of Cuiabá, situated in central South America (Fig. 
1). Cuiabá is one of the oldest Brazilian municipalities, founded in 1719, but only 
from 1970 to 1990 did it experience exponential population growth, which was not 
accompanied by urban planning or an increase in wastewater treatment (Brasil, 2019). 
This city currently has approximately 620,000 inhabitants and a population density of 
approximately 190 inhabitants per square kilometer. Cuiabá is located in a region with 
a high density of streams, all tributaries of the Cuiabá River, a tributary of the Paraguay 
River basin. Vegetation cover is patchy, composed of fragments of Cerrado sensu stricto 
(a regional savannah vegetation type), tropical dry forests and riparian forests.

Sampling. Data collection was carried out from October 2017 to February 2018 in 45 
streams, with one sampling per stream. All the streams are urban and distributed along 
a gradient of proportions of surrounding impervious surfaces (urban infrastructure) 
(Hahns, McDonnell, 2006; Meador, 2020; Fig. 1). This urbanization gradient ranged 
from the downtown area (with the greatest flow of people and a higher proportion of 
urban structures, e.g., higher proportion of streets and buildings in the landscape) to the 
peripheral regions of the city (with less urban development and a lower proportion of 
urban structures).

Each sampling site consisted of a continuous 50 m long reach of a stream (27 first- and 
18 second-order streams, following Strahler (1957); Fig. 1). Fish assemblage data were 
collected over the entire stream reach, while environmental variables were measured at 
regular intervals (see below).

http://ni.bio.br
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Environmental variables. Environmental variables were sampled using the protocol 
proposed by Mendonça et al. (2005), adapted to urban environments. Stream width 
and water depth, substrate composition, and canopy cover were used to quantify the 
local environmental heterogeneity and habitat structure. We measured these local 
environmental variables because stream fishes often show habitat-specific associations, 
e.g., higher species richness in sites with a greater proportion of sand, leaves, depth 
(Kemenes, Forsberg, 2014), and vegetation cover (Cruz, Pompeu, 2020) or species-
specific abundance associations with depth and substrate composition (Mendonça et al., 
2005).

The width, water depth, and substrate composition were recorded in five transects 
along each stream (Tab. S1). The water depth, proportion of algae, proportion of 
woody material (stems and roots), proportion of litter (organic matter, such as leaves 
and small branches), and substrate composition were estimated from their presence at 
nine equidistant points along each transect, totaling 45 measurements in each stream 
reach. The substrate was classified into one of three categories: i) sandy (0.6–2 mm); 
ii) clay (< 0.6 mm); and iii) gravel and rocks (stones with diameters greater than 2 
mm). The contributions of each substrate class, algae, woody material and litter were 
represented by their relative proportion in each sampling site. The water depth was 
measured with a graduated ruler.

The canopy cover was measured using five photographs taken in the center of each 

FIGURE 1 | Location of the 45 streams sampled for fish in urban area within Cuiabá, Mato Grosso state, midwestern Brazil. The gray area 

indicates impervious surfaces. The color gradient indicates the proportion of impervious surfaces in a 500 m buffer around each stream; the 

closer to one the value is, the higher the quantity of urban infrastructure around the stream. The continuous lines indicate the hydrography. 

The dashed lines indicate the political boundary of Cuiabá with the neighboring municipality of Várzea Grande.
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transect by the same person (IB), approximately 1 m above the water. A cell phone 
was held in a horizontal position, and the front-facing camera angled directly up was 
used to take the photos. The photographs were then converted to black and white 
using GIMP software. From the conversion, a gradation of white, gray, and black tones 
was obtained, corresponding to pixel values ranging from 0 to 255. The low values 
(here < 130) represent dark-toned pixels, indicating the presence of canopy coverage. 
The percentage of canopy cover of each stream section was averaged from the five 
photographs (for a detailed description, see Arnhold et al., 2019).

We quantified the proportion of impervious surfaces around the stream as a proxy 
for urbanization (Hahns, McDonnell, 2006; King et al., 2011; Meador, 2020). We used 
data on land-use and land-cover categories classified by the MapBiomas project (Souza 
et al., 2020). MapBiomas combines annual Landsat satellite images from 1985 to 2019 
(Collection 5), classifying different land-use and land-cover categories in Brazil on a 
pixel basis (30 × 30 m resolution) with a Random-Forest algorithm (Souza et al., 2020). 
From the categories available, we used a map with only the urban infrastructure to 
quantify the extent of urbanization around the Cuiabá streams in 2017. This map had a 
grid with pixels, with urban infrastructures coded as one (presence) and zero (absence). 
We built a buffer around the coordinates of each stream, summed the number of pixels 
inside the buffer that had urban infrastructure, and then divided that number by the 
buffer area. This process resulted in a simple physical index of urbanization using a 
relative scale (Hahns, McDonnell, 2006; King et al., 2011), with higher values (closer to 
one) indicating a greater presence of urban structures around a stream. We calculated 
the proportions of impervious surfaces with buffers of different radii (100, 200, 300, 400, 
500, 800, 1000, 1500, and 2000 m). For inferences related to the estimated proportions 
of impervious surfaces, we used a buffer of 500 m because the results from all the buffers 
were highly correlated (Pearson correlation coefficient (r), r > 0.6; Tab. S2), and there 
was a lower overlap between buffers of this radius than for those with larger sizes (Fig. 
S3). Additionally, a radius of 500 m resulted in less variation in the estimates of the 
proportions of impervious surface than smaller buffers (see Fig. S4).

Fish sampling. Fish were sampled using sieves (with 1 mm and 2 mm mesh sizes) 
and dip nets (1 mm mesh size). Each gear type was used by a different person for 50 
minutes along the entire stream section (total sampling effort per section = 100 min). 
To minimize fish escape and to increase sampling efficiency, we first divided the 50 m 
section into five subsections of 10 m by using 2.5 mm seine nets and then sampled the 
subsections sequentially.

The captured fish were euthanized by an anesthetic overdose of clove oil (Fernandes 
et al., 2017), fixed in 10% formalin solution for five days, and then preserved in 70% 
ethanol. Fish were identified using regional taxonomic keys (Britski et al., 2007) and 
subsequently deposited in the fish collection of the Universidade Federal de Mato 
Grosso, Cuiabá, Mato Grosso, Brazil (CPUFMT 6839 to CPUFMT 6882).

Data analysis. We estimated species diversity as individual-based rarefied species 
richness (Srarefied) to the lowest number of individuals sampled (six individuals; no fish 
were sampled at six sites, and two sites had only one fish; the Srarefied for these sites was 
fixed as zero and one, respectively). Rarefaction is a method to control for differences 
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in sampling effort across a set of samples (Gotelli, Colwell, 2011). All 45 streams were 
used in this analysis.

We estimated beta diversity as the local contribution to beta diversity (LCBD; 
Legendre, De Cáceres, 2013). LCBD quantifies the relative contribution of each stream 
to the overall variance in a species composition matrix. In other words, this index 
expresses the uniqueness of species composition at a given sampling site (Legendre, De 
Cáceres, 2013). LCBD values vary between 0 and 1, where 0 indicates totally similar 
assemblages (an assemblage composed of species present in all sampling sites), and 1 
indicates totally dissimilar assemblages (a more unique composition; Legendre, De 
Cáceres, 2013). We estimated LCBD with a Hellinger distance matrix computed with 
a fish species abundance (columns) by stream (rows) matrix. We excluded from the 
LCBD computation the six streams where no fish were sampled.

We quantified environmental heterogeneity (EH) as distances to the median in a 
multivariate space (Anderson et al., 2006; Heino, Grönroos, 2013). We first computed a 
standardized Euclidean distance matrix among sites using local environmental variables 
(mean stream width, mean depth, substrate composition, proportion of algae, woody 
material and litter, and canopy cover). Then, we ordinated the streams with a Principal 
Coordinate Analysis (PCoA). Finally, we estimated the distance of each stream to 
the median of the PCoA ordination. Streams with a higher distance to the median 
(EH henceforth) had a more heterogeneous environment than streams with a smaller 
distance to the median (the latter were less heterogeneous). It is important to note that 
EH was computed with stream width, depth, canopy cover and substrate composition; 
thus, streams with higher EH have a unique combination of these local environmental 
characteristics compared to the most common combination of these same variables (the 
multivariate median). Our EH index provides no information regarding the conservation 
status of the stream (e.g., preserved or degraded) because we did not include any variable 
describing this status when calculating distances among streams. Furthermore, EH and 
the proportion of urban structures were not correlated (see below). Thus, degradation 
had no influence on EH in our study (at least considering a potential measure of 
degradation around the stream measured by the proportion of urban structures).

We assessed the relationship between Srarefied or LCBD and the proportion of 
impervious surfaces and EH using (generalized) linear models. For the model with Srarefied 
as the response variable, the proportion of impervious surfaces (a quantitative proxy for 
urbanization) and EH were the explanatory variables. This model consisted of a multiple 
regression by ordinary least squares (OLS). To improve the linearity of the relationships, 
we transformed EH by loge(x). We assessed the assumption of homogeneity of variance 
with dispersion plots with residuals and fitted values, the normality of residuals with 
quantile plots of standardized residuals with fitted values, and the presence of influential 
observations with a plot with standardized residuals of the leverage function and with 
Cook’s distance thresholds (Quinn, Keough, 2002; Zuur et al., 2010). We tested for 
spatial autocorrelation in the residuals with a Mantel correlogram and bubble plot 
of model residuals (Zuur et al., 2009, 2010; Legendre, Legendre, 2012). The model 
with Srarefied as the response variable met linear model assumptions and showed neither 
influential observations nor spatial autocorrelation (Figs. S5 and S6).

For the model with LCBD as the response variable, the proportion of impervious 
surfaces and EH were again the explanatory variables. Since LCBD values are bounded 
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between 0 and 1, we used a beta regression (Ferrari, Cribari-Neto, 2004; Douma, 
Weedon, 2019) to relate LCBD and both explanatory variables. Beta regression is 
appropriated to model responses for unit intervals, such as rates and proportions, which 
are typically heteroskedastic (Cribari-Neto, Zeileis, 2010). Also, a link function makes 
the expected value of the response linear and the expected variances homogeneous 
(Bolker et al., 2009). For the beta regression, we used a logit link function and reported 
pseudo-R² as a measure of fit (Ferrari, Cribari-Neto, 2004; Cribari-Neto, Zeileis, 2010). 
We assessed the assumption of homogeneity of variance with dispersion plots with 
residuals and fitted values and the presence of influential observations with Cook’s 
distance (Quinn, Keough, 2002; Zuur et al., 2010). The assumptions of homogeneity of 
variance and spatial autocorrelation were tested using the same procedures mentioned 
above. The model with LCBD as the response variable met linear model assumptions 
and showed neither influential observations nor spatial autocorrelation (Fig. S7 and 
S8). Multicollinearity was not an issue in either model with Srarefied or LCBD as response 
variable because the correlation between the explanatory variables was low and not 
statistically significant (Pearson correlation coefficient (r) = -0.07, P = 0.627). 

We used distance-based Redundancy Analysis (dbRDA; McArdle, Anderson, 2001) 
to assess the effects of log-transformed EH and the proportion of impervious surfaces 
on stream fish species abundances. We used a Hellinger distance matrix (Legendre, 
Legendre, 2012) computed with fish species abundance (columns) by stream (rows) 
as the response matrix in the dbRDA. We excluded the six streams with no sampled 
fish from the dbRDA. We assessed the contribution of each fish species to the dbRDA 
axes correlating the Hellinger-transformed abundances and stream scores in the 
dbRDA ordination (“envfit” routine; association significance computed with 9,999 
permutations).

We performed all analyses in R software (R Core Development Team, 2020) with the 
“vegan” (Oksanen et al., 2019), “adespatial” (Dray et al., 2020), ”riverdist” (Tyers, 2020) 
in the Supplementary material S5. “betareg” (Cribari-Neto, Zeileis, 2010), and “lmtest” 
(Zeleis, Hothorn, 2002), “riverdist” (Tyers, 2020) packages. We included “riverdist” in 
the S5. We adopted a 5% significance level for all analyses.

RESULTS

The proportion of impervious surfaces around the streams varied from 0.002 to 1.00 
(mean ± SD = 0.67 ± 0.28). The EH varied from 1.33 to 6.71 (2.73 ± 1.24). Streams with 
higher EH tended to be deeper and have a higher proportion of clay, litter, or algae. 
Streams with lower EH tended to be shallow and narrower, to have greater canopy 
cover, and to have a higher proportion of sand, gravel or rocks (Fig. 2).

We sampled 6,651 individuals of 31 fish species. Most species were Characiformes 
(15 spp), with the sixteen remaining species distributed between Siluriformes (10), 
Cichliformes (three) and Cyprinodontiformes (two). The assemblages were dominated 
by the exotic invasive poeciliid Poecilia reticulata Peters, 1859 (n = 5,091 individuals; 
76.54% of total abundance), present at 70.6% of the sites, and by the characids 
Hemigrammus tridens Eigenmann, 1907 (801 individuals; 12.04%) and Astyanax 
lacustris (Lütken, 1875) (389 individuals; 5.85%), present at 15.6% and 27.67% of the 
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sites, respectively. Individuals of these three species accounted for 94.44% of the total 
abundance in the sampled urban streams. We collected only one individual each of 
the characids Jupiaba acanthogaster (Eigenmann, 1911) and Moenkhausia dichroura 
(Kner, 1858), the crenuchid Characidium zebra Eigenmann, 1909, and the callichthyid 
Lepthoplosternum pectorale (Boulenger, 1895).

For local diversity, rarefied species richness (Srarefied) varied from 0.00 to 4.00 (mean 
± SD = 1.68 ± 1.10). The local contribution to beta diversity (LCBD; an index of the 
uniqueness of species composition) varied from 0.01 to 0.08 (0.03 ± 0.03). There were 
no strong spatial patterns in the Srarefied and LCBD distributions because higher and 
lower values occurred in streams irrespective of their locations (Fig. 3). Streams with 
higher Srarefied presented a higher LCBD (Spearman correlation, ρ = 0.73; P < 0.001).

Multiple regression analysis indicated that variation in the Srarefied in the urban streams 
was significantly influenced by the proportions of impervious surfaces (F2, 42 = 3.32; P 
= 0.046) but not affected by EH (P = 0.898). This model had low predictive power, 
explaining only approximately 10% of the Srarefied variation (R²adj = 0.10). The streams 
surrounded by a higher proportion of impervious surfaces tended to have lower Srarefied 
values (Tab. 1; Fig. 4).

The beta regression model indicated that the proportion of impervious surfaces 
explained significantly the variation in the LCBD (Likelihood ratio test, χ² = 13.07; d.f. 
= 2; P = 0.002). Similar to its influence on Srarefied, EH did not have an important effect 
on the LCBD. This model also had low predictive power, explaining approximately 
28% of the variation in the LCBD (pseudo-R² = 0.28). The LCBD tended to decline 
with increases in the proportions of impervious surfaces (Tab. 2; Fig. 5). The results of 

FIGURE 2 | Principal Coordinate Analysis (PCoA) of local environmental variables of streams from the urban area of Cuiabá, Mato Grosso, 

midwestern Brazil. The symbol sizes are proportional to the environmental heterogeneity (EH); PlaMat: plant matter; GraRoc: gravel and 

rocks; CanCov: canopy cover.
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FIGURE 3 | Spatial variation in rarefied species richness (S
rarefied

; A) and the local contribution to beta diversity (LCBD; B) in urban streams in 

Cuiabá (Mato Grosso, Brazil). The circle sizes in the legend indicate the minimum, mean, and maximum values of S
rarefied

 and the LCBD. The 

arrow in “A” indicates flow direction.

FIGURE 4 | Relationship between rarefied species richness (S
rarefied

) and the proportion of impervious surfaces in urban streams in Cuiabá. 

The line indicates fitted values.

the two linear models relating the Srarefied or LCBD to the explanatory variables changed 
little when we adjusted different buffers applied to estimate the proportion of impervious 
surfaces (Tabs. S9 and S10).
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EH and the proportion of impervious surfaces explained the variation in the fish 
species composition of the urban streams significantly (dbRDA significance test assessed 
with 9,999 permutations: F2, 36 = 3.21; P = 0.011; R²adj = 0.104). The first and second 
dbRDA axes explained approximately 15.15% of the distances in species composition 
between the streams. The proportion of impervious surfaces had a strong and negative 
association with dbRDA 1, and EH presented a strong and negative association with 
dbRDA 2. None of the species showed a strong preference for streams with lower or 
higher EH; however, streams located in regions with higher proportions of impervious 
surfaces tended to have high abundances of Poecilia reticulata, while Serrapinnus microdon 
(Eigenmann, 1915), S. calliurus (Boulenger, 1900), Hemigrammus tridens and Astyanax 
lacustris were more abundant in streams located in areas with lower proportions of 
impervious surfaces (Fig. 6). On the other hand, Corydoras aeneus (Gill, 1858), 
Phenacogaster jancupa Malabarba & Lucena, 1995, Astyanax abramis (Jenyns, 1842), 
Hoplias malabaricus (Bloch, 1794) and Hypostomus khimaera Tencatt, Zawadzki & 
Froehlich, 2014 tended to be more abundant in streams with lower EH.

Parameter Estimate SE t P

Intercept 2.53 0.56 4.50 < 0.001

loge(EH) -0.05 0.40 -0.13 0.898

Proportion of impervious surfaces -1.43 0.56 -2.58 0.014

TABLE 1 | Relationship between rarefied species richness and environmental heterogeneity (EH) and the proportion of impervious surfaces 

assessed with an ordinary least squares model. EH consists of distances to a median value estimated from environmental data. The proportion 

of impervious surfaces was a proxy for urbanization. SE: standard-error.

FIGURE 5 | Relationship between the local contribution to beta diversity (LCBD) and the proportion of 

impervious surfaces in urban streams in Cuiabá. The line indicates fitted values.
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DISCUSSION

We set out to investigate whether environmental heterogeneity and urbanization affect 
fish assemblages in streams in a medium-sized Brazilian city. Our assessment indicates 
that urbanization had a negative effect and was more important than EH for explaining 
the spatial variation in Srarefied and LCBD, at least with the surrogate variables we used. 
Furthermore, increases in urbanization were related with increases in the abundance of 
Poecilia reticulata, an introduced fish species dominant in our samples, and decreases in 
native species occurrences. These results are consistent with growing evidence of the 
negative effect of urbanization on aquatic fauna worldwide (e.g., Groffman et al., 2014; 
Borges et al., 2020; Cruz, Pompeu, 2020; Meador, 2020).

FIGURE 6 | Ordination of fish species composition by distance-based redundancy analysis (dbRDA) in 

relation to environmental heterogeneity (EH; estimated from environmental data and transformed by 

loge(x) prior to dbRDA) and the proportion of impervious surfaces (ImpSurf). Species codes, 1: Poecilia 

reticulata; 2: Corydoras aeneus; 3: Phenacogaster jancupa; 4: Astyanax abramis; 5: Hoplias malabaricus; 6: 

Hypostomus khimaera; 7: Serrapinnus calliurus; 8: S. microdon; 9: Hemigrammus tridens; 10: A. lacustris.

TABLE 2 | Relationship between the local contribution to beta diversity and environmental heterogeneity (EH) and the proportion of 

impervious surfaces estimated with a beta regression model. EH consists of distances to a median value estimated from environmental data. 

The proportion of impervious surfaces was a proxy for urbanization. SE: standard-error.

Parameter Estimate SE z P

Intercept -3.18 0.35 -9.22 < 0.001

loge(EH) 0.43 0.24 1.79 0.073

Proportion of impervious surfaces -1.49 0.36 -4.12 < 0.001
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The negative effects of urbanization on all the attributes of fish assemblage structure 
may occur for several reasons. First, impervious surfaces decrease water infiltration and 
increase surface runoff, reducing flood event intervals in urban streams (White, Greer, 
2006). Constant and intense flood events can affect aquatic biodiversity, reducing 
system productivity, food resources, trophic structure, species distribution and fish 
assemblage composition (Hakamada, Penha, 2014; Fraley et al., 2018). Second, riparian 
vegetation in urban regions is normally limited and composed of invasive plant species, 
thus modifying natural streamflow dynamics due to reduced rates of infiltration and 
high runoff (Groffman et al., 2003; White, Greer, 2006). Changes in plant species 
composition and the canopy openness of riparian vegetation in urban areas, compared 
to those in conserved areas, may also change food resource availability and increase 
water temperature (Oliveira, Bennemann, 2005; Godinho, 2008). Altered conditions 
and changes in resource availability can limit colonization by fish species. Irrespective 
of the specific mechanism, the stressful conditions imposed by urbanization are likely 
to exclude more sensitive fish species from streams with a greater presence of urban 
structures via local extinction or by precluding colonization by such species (Hewitt et 
al., 2010; Bourassa et al., 2017). This form of species exclusion results in a lower number 
of species. Additionally, the local contribution to beta diversity is reduced when streams 
with higher levels of urbanization are all occupied by the same set of disturbance-
tolerant species (Hewitt et al., 2010; Petsch, 2016; Bourassa et al., 2017).

Water depth, stream width, substrate composition, and canopy cover may constitute 
a greater variety or diversity of habitats (Bojsen, Barriga, 2002; Peláez, Pavanelli, 2019) 
and high EH, which provides protection against predation and adverse environmental 
conditions and may support a larger area for colonization (MacArthur, MacArthur, 
1961; Tews et al., 2004; Ortega et al., 2018; Ben-Hur, Kadmon, 2020). Consequently, 
assemblages at locations with higher EH may be richer because those locations can 
accommodate the niche requirements of a greater number of species (MacArthur, 
MacArthur, 1961; Tews et al., 2004; Ortega et al., 2018). EH is also a factor that often 
explains spatial variation in fish community beta diversity in the natural environment 
(Peláez, Pavanelli, 2019; Roa-Fuentes et al., 2019); however, EH did not influence the 
Srarefied or LCBD and had only a small effect on species composition in our study. It is 
noteworthy that our proxy for EH included only distances considering the physical 
and biotic characteristics of the streams, such as substrate composition, width, depth, 
and vegetation cover. Thus, if an effect of EH on diversity does exist in these streams 
and was not detected by our study, it is likely that diversity may correlate with the EH 
measured with other variables, such as chemical (e.g., differences in pH, dissolved oxygen 
and nutrients) or biotic (e.g., macrophyte cover or richness) variables. For example, 
Stein, Kreft (2015) observed that 165 different variables were used as a proxy for EH 
in the ecological literature, and they represented measures of different types, such as 
biotic, chemical or physical. Another possibility is that diversity may correlate with 
the EH measured at larger spatial scales than we used. For example, Stein et al. (2014) 
observed that EH had a pervasive positive effect on species richness at large spatial scales. 
A confounding factor to consider when assessing the effect of EH on diversity at large 
spatial scales is the indirect effect of urbanization. At large spatial scales, urbanization 
tends to homogenize both the environment and the biota (McKinney, 2006; Groffman 
et al., 2014).
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Unfortunately, by expressing EH only with physical environmental characteristics 
(and not water chemical conditions) we might have underestimated EH’s influence in 
urban streams. Normally, urban streams are polluted by domestic and industrial sewage, 
and surface runoff of chemicals is released directly into the ground and water bodies. 
Untreated domestic and industrial wastewater are rich in matter and organic compounds 
(Lee, Rasmussen, 2006), the degradation of which by microorganisms consumes much 
of the dissolved oxygen in the water column (Seitzinger, 1994; Daniel et al., 2002). The 
resulting decrease in oxygen availability often results in fish die-offs (e.g., Starling et al., 
2002; Wepener et al., 2011; Ram et al., 2014). Furthermore, our study encompassed 
first- and second-order streams (Strahler, 1957); thus, it is likely that the environmental 
conditions and the biota from this system were naturally homogeneous. In other words, 
it is likely that we sampled a short gradient of EH that would be important for fish 
diversity. 

Streams with higher Srarefied tended to have higher LCBD values. This result has 
management implications because conserving streams with higher species richness 
would help to conserve locations with higher contributions to beta diversity. Other 
studies have found a negative relationship between species richness and LCBD 
(Legendre, De Cáceres, 2013; Heino et al., 2017). In these cases, management actions 
to conserve both of these characteristics of diversity would need to maintain a balance 
between sites with high species richness and those with a high contribution to beta 
diversity.

The abundance of some fish species was correlated with EH and urbanization. 
Interestingly, the two most dominant species tended to be correlated with different 
variables. Astyanax lacustris tended to occur in streams with high EH, those with greater 
depths and substrates with higher proportions of clay, litter or algae. Astyanax species 
often have small body sizes and large spatial distributions in many Neotropical basins, 
occurring in small or large rivers and marginal lagoons (Lima et al., 2003; Mehanna, 
Penha, 2011; Costa-Pereira et al., 2017). Astyanax lacustris has an omnivorous diet, 
feeding on algae, seeds, fruits, other plant parts and even invertebrates (Costa-Pereira et 
al., 2017). Other studies reported species of Astyanax to be indicators of well-conserved 
streams or of those impacted by pastures and to be absent from urban streams (Casatti 
et al., 2010); the reproductive activity a close relative species Psalidodon fasciatus (former 
Astyanax fasciatus) has been shown to be influenced by the degree of pollution in streams 
(Schulz, Martins-Júnior, 2001). In contrast, Poecilia reticulata, the most abundant species 
in our sample (present at 70.6% of sites), presented higher abundances in streams located 
in highly urbanized regions. This species is considered an indicator of degraded aquatic 
environments (de Carvalho et al., 2017) and is highly invasive, replacing native species 
in ecosystems with various degrees of contamination from industrial and domestic 
sewage (Gomes-Silva et al., 2020). Poecilia reticulata can consume insects and debris, food 
resources commonly available in aquatic environments (Oliveira, Bennemann, 2005; 
de Carvalho et al., 2019). Other potential traits that may favor the persistence of high 
abundances of P. reticulata include internal fertilization, livebearing (Magurran, 2005; 
El-Sabaawi et al., 2016) and broad tolerance to both abiotic conditions (Chervinski, 
1984; Araújo et al., 2009) and predation pressure (Magurran, 2005).

In summary, we observed a negative effect of urbanization on the Srarefied and 
LCBD of fish in urban streams. Furthermore, EH was associated with the abundance 
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distribution of only a few native fish species. Our results highlight the negative effect of 
urbanization on fish assemblage structure and show that maintaining high environmental 
heterogeneity can help native fish species to persist in urban ecosystems. Specifically, 
we showed that an increase in impervious surfaces around streams reduced fish species 
richness and community uniqueness. Thus, to maintain native fish assemblages in 
urban areas, it is important to avoid expanding impermeable surfaces around streams. 
Additionally, reducing impermeable surfaces around streams located in more urbanized 
areas seems to be a good strategy to restore fish communities. Such results are likely 
to become increasingly significant in the near future, given the increasing presence of 
urban ecosystems in the landscape (Seto et al., 2012).
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