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Molecular cytogenetics insights in two 
pelagic big-game fishes in the Atlantic, 
the tarpon, Megalops atlanticus 
(Elopiformes: Megalopidae), and 
the sailfish, Istiophorus platypterus 
(Istiophoriformes: Istiophoridae)
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Some pelagic and usually large sized fishes are preferential targets for sport and 
commercial fishing. Despite their economic importance, cytogenetic data on 
their evolutionary processes and management are very deficient, especially due 
to logistical difficulties. Here, information for two of such charismatic species, 
the tarpon, Megalops atlanticus (Elopiformes: Megalopidae), and the sailfish, 
Istiophorus platypterus (Istiophoriformes: Istiophoridae), both with a wide Atlantic 
distribution, were provided. Cytogenetic data were obtained using conventional 
methods (Giemsa staining, Ag-NORs technique, and C-banding), base-specific 
fluorochrome staining and fluorescence in situ hybridization (FISH) with rDNA 
probes. Megalops atlanticus has 2n = 50 chromosomes, all acrocentric ones (NF = 
50), while Istiophorus platypterus has 2n = 48 chromosomes, 2m + 2st + 44a (NF = 
52). Megalops atlanticus populations from the South Atlantic and Caribbean share 
identical karyotypic patterns, likely associated with gene flow between them. 
In turn, I. platypterus presents karyotype similarities with phylogenetically close 
groups, such as Carangidae. The chromosomal characteristics of these species 
highlight their independent evolutionary paths. Additionally, the current data 
contribute to knowledge of new aspects of pelagic fish fauna and will support 
further comparative studies with congeneric species, clarifying evolutionary 
karyotype trends of these fish groups.
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Alguns peixes pelágicos de grande porte são alvos preferenciais para a pesca 
esportiva e comercial. Apesar de sua importância econômica, os dados 
citogenéticos sobre seus processos evolutivos e de manejo são muito deficientes, 
principalmente devido às dificuldades logísticas. Aqui são apresentadas 
informações cromossômicas de duas espécies carismáticas, o tarpão, Megalops 
atlanticus (Elopiformes: Megalopidae), e o agulhão-vela, Istiophorus platypterus 
(Istiophoriformes: Istiophoridae), ambos com ampla distribuição no oceano 
Atlântico. Os dados citogenéticos foram obtidos usando métodos convencionais 
(coloração em Giemsa, técnica de Ag-NORs e bandamento C), coloração com 
fluorocromos específicos e hibridização fluorescente in situ (FISH) com sondas 
DNAr. Megalops atlanticus possui 2n = 50 cromossomos, todos acrocêntricos (NF 
= 50), enquanto Istiophorus platypterus possui 2n = 48 cromossomos, 2m + 2st + 44a 
(NF = 52). Populações de M. atlanticus do Atlântico Sul e Caribe compartilham 
padrões cariotípicos idênticos, provavelmente associados ao fluxo gênico entre 
regiões. Por sua vez, I. platypterus apresenta semelhanças cariotípicas micro e 
macroestruturais com grupos filogeneticamente próximos, como Carangidae. As 
características cromossômicas destas espécies destacam seus caminhos evolutivos 
independentes. Adicionalmente, os dados apresentados contribuem com novos 
aspectos da fauna pelágica e apoiarão futuros estudos comparativos com espécies 
congenéricas, esclarecendo as tendências evolutivas do cariótipo destes grupos 
de peixes.

Palavras-chave: Citogenética animal, Conservação de espécies, DNAr, Evolução 
cromossômica. 

INTRODUCTION

Pelagic ecosystems represent one of the largest environments on the planet and, in 
general, little is known about the evolutionary features of its ichthyofauna. Marine 
pelagic fishes can reach an extensive geographical distribution, a condition that has 
direct implications for their genetic and cytogenetic patterns (Galetti et al., 2000, 2006; 
Soares et al., 2013, 2017). However, cytogenetic analyses in large marine fishes, especially 
the pelagic ones, are very scarce even in those of great economic value, mostly due to 
logistical restrictions involved (Soares et al., 2013, 2014).

A large phylogenetic spectrum of fish groups inhabit the pelagic ecosystems, including 
representatives of the orders Elopiformes and Istiophoriformes. Elopiformes presents 
itself as a sister group to all the others groups of the superorder Elopomorpha (Chen et al., 
2014) and comprises only two old and slightly diverse families, the Elopidae (with only 
the Elops genus, with 7 species) and Megalopidae (with only the Megalops genus, with 2 
species), with an estimated origin of 215 Mya (Broughton et al., 2013). Elopiformes (9 spp.) 
is hundreds of times less diverse than other Elopomorpha groups, such as Anguilliformes 
(995 spp.) (Fricke et al., 2020). Therefore, due to their phylogenetically position and 
evolutionary aspects, the cytogenetic patterns of Elopiformes are one important element 
that contributes to clarify the karyotype evolution in Teleostei as a whole.
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Istiophoriformes includes the families Istiophoridae and Xiphiidae, also comprising 
important species in sport fishing, such as the sailfish I. platypterus (Shaw, 1792), globally 
distributed throughout the world’s tropical and subtropical marine water, and the 
swordfish Xiphias gladius Linnaeus, 1758 widely distributed in the Atlantic, Pacific and 
Indian Oceans (Fricke et al., 2020). The origin of the Istiophoriformes probably occurred 
around ~71 Mya, in the Late Cretaceous (100.5–66 Mya), and the diversification of 
istiophorids and swordfishes originated around ~17.5 Mya, in the Early Miocene (23–16 
Mya) (Santini et al., 2013). 

Sailfishes are active predators distributed in pelagic ecosystems in tropical and temperate 
regions, morphologically characterized by a protruding upper jaw (Nakamura, 1985), 
and considered to be among the fastest swimmers in the oceans (Svendsen et al., 2016). 
Despite their ecological and commercial importance, the global genetic population 
structure of sailfish is not well understood (Lu et al., 2015), and cytogenetic information 
on these fishes is still lacking.

In the present study we provide a detailed karyotypic analysis of the tarpon, Megalops 
atlanticus Valenciennes, 1847 (Elopiformes: Megalopidae) and the sailfish, Istiophorus 
platypterus (Istiophoriformes: Istiophoridae), both representatives of marine species with 
a high economic importance, especially in the lucrative sportfishing market (Ault, Luo, 
2013; Adams et al., 2019). These species occupy vast tropical and subtropical oceanic 
regions, where M. atlanticus inhabits coastal waters, including estuaries and lagoons, 
and I. platypterus is eminently oceanic (Nakamura, 1985; Riede, 2004; Ault, 2010). It 
was applied conventional and molecular cytogenetic procedures (Giemsa, Ag- NORs, 
C- and MM/DAPI banding, and mapping of the 18S and 5S rDNAs, in order to 
investigate the chromosomal patterns of the current species, provide a first basis to 
further interpopulation comparisons, and highlight the main cytogenetic divergences 
between Elopifomes and Istiophoriformes groups. 

MATERIAL AND METHODS

Samples. Five juvenile individuals of Megalops atlanticus (Elopiformes: Megalopidae) 
and four individuals (undetermined sex) of Istiophorus platypterus (Istiophoridae) were 
collected from the Brazilian Northeast coast, in the Rio Grande do Norte State (M. 
atlanticus and I. platypterus – 06°20’S 35°15’W) (Fig. 1), through sport and commercial 
fishing vessels. Collections had the authorization of the Chico Mendes Institute for 
Biodiversity Conservation (ICMBio), System of Authorization and Information about 
Biodiversity (SISBIO-Licenses No 19135–1, 131360–1 and 27027–2), a National System 
of Genetic Resource Management and Associated Traditional Knowledge (SISGEN). 
All cytogenetics procedures were performed at the Laboratory of Genetics of Marine 
Resources from the Federal University of Rio Grande do Norte.

Chromosome preparation, C-banding, Ag-NOR and MM/DAPI staining. 
Chromosome preparations were performed from kidney tissues dissociated in 9.5 ml 
RPMI 1640 medium with 0.2 ml colchicine, for 30 min, followed by hypotonization 
with KCl 0.075, for 25 min at room temperature (Gold et al., 1990). The cell suspension 
was dropped onto clean slides covered with a thin film of water at 60 oC. After drying, 
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chromosomes were stained with Giemsa 10%, diluted in pH 6.8 phosphate buffer. 
Nucleolar organizing regions (NORs) and the constitutive heterochromatin were 
visualized by Silver nitrate staining (i.e., Ag-NORs) and C-banding, according to 
Howell, Black (1980) and Sumner (1972), respectively. Additionally, chromosomes 
were stained with Mithramycin (GC-specific) and DAPI (AT-specific) fluorochromes, 
according to Schweizer (1976).

Repetitive DNA mapping with fluorescence in situ hybridization (FISH). FISH 
(fluorescence in situ hybridization) was performed according to Pinkel et al. (1986). The 
5S rDNA (~200 bp) and 18S rDNA (1400 bp) probes were obtained by polymerase 
chain reaction (PCR), from the nuclear DNA of Rachycentron canadum (Carangiformes), 

FIGURE 1 | Geographic distribution map of Megalops atlanticus (Megalopidae) and Istiophorus 

platypterus (Istiophoridae) across the Atlantic ocean. The shaded areas represents the occurrence and 

the yellow stars represent the collection sites of the species.

https://www.ni.bio.br/
https://www.scielo.br/ni


Rodrigo X. Soares, Gideão W. W. F. Costa, Marcelo B. Cioffi, Luiz A. C. Bertollo, Clóvis C. Motta-Neto and Wagner F. Molina

Neotropical Ichthyology, 19(2): e210007, 2021 5/12ni.bio.br | scielo.br/ni

using the primers A 5′-TAC GCC CGA TCT CGT CCG ATC-3 ′, B 5′-CAG GCT 
GGT ATG GCC GTA AGC-3 ′ (Pendás et al., 1994) and NS1 5′-GTA GTC ATA 
TGC TTG TCT C-3 ′ / NS8 5 ′ -TCC GCA GGT TCA CCT ACG GA-3 ′ (White 
et al., 1990). The probes were labeled by nick translation with biotin-14-dATP and 
digoxigenin-11-dUTP (Roche, Mannheim, Germany) and detected with streptavidin-
FITC (Vector Laboratories), and anti-digoxigenin-rhodamine (Roche, Mannheim, 
Germany), respectively. 

Microscopy and image processing. At least 30 metaphases of each individual 
were analyzed and the best results were photographed in an Olympus ™ BX51 
epifluorescence microscope coupled to the digital image capture system Olympus 
DP73 (Olympus Corporation, Ishikawa, Japan), using the cellSens software (Version 
1.9 Digital, Tokyo, Kanto, Japan). The fundamental number was based on the 
number of chromosome arms and the chromosomes were classified as metacentric (m), 
submetacentric (sm), subtelocentric (st), and acrocentric (a), according to the arms 
ratio (Levan et al., 1964). 

Abbreviations. 18S – 18S ribosomal RNA; 2n – Diploid number; 5S – 5S ribosomal 
RNA; a – Acrocentric chromosome(s); Ag-NORs – Nucleolar Organizing Regions 
evidenced through silver nitrate impregnation; AT – Adenine/Thymine; DAPI – 
4′,6-diamidino-2-phenylindole; FISH – Fluorescence in situ hybridization; FITC 
– Fluorescein isothiocyanate; GC – Guanine/Cytosine; ICMBio – Chico Mendes 
Institute for Biodiversity Conservation; KCl – Potassium chloride; m – Metacentric 
chromosome(s); MM – Mithramycin; Mya – Millions of years ago; NF – Fundamental 
number; NORs – Nucleolar organizing regions; PCR – Polymerase chain reaction; 
rDNA – Ribosomal DNA; SISBIO – System of Authorization and Information 
about Biodiversity; SISGEN – National System of Genetic Resource Management 
and Associated Traditional Knowledge; st – Subtelocentric chromosome(s); µm – 
micrometer.

RESULTS

Megalops atlanticus has 2n = 50 chromosomes, all acrocentric (NF = 50), while I. platypterus 
has 2n = 48, and the karyotype composed of 2m + 2st + 44a chromosomes (NF = 52) 
(Fig. 2). No heteromorphic chromosomes were evidenced among the individuals of 
species.

In both species, heterochromatic blocks occur mainly in the centromeric regions (e.g., 
M. atlanticus – pairs 8, 10, 12; I. platypterus – pairs 10, 11, 14), but also in the terminal 
regions of some pairs (e.g., M. atlanticus – pairs 5, 7, 17; I. platypterus – pairs 5, 8, 11) 
(Fig. 2). The Ag-NORs sites are found in a single chromosome pair, although specific 
to each species. Thus, in M. atlanticus they are interstitially located in the long arms of 
the smallest 25th pair, while in I. platypterus they are terminally located in the short arms 
of the 2nd pair (Fig. 2, highlighted). These sites are in agreement with the location of the 
18S rDNA hybridization signals, being also MM+/DAPI- stained, which characterizes 
them as GC-rich regions (Fig. 2, highlighted).

https://www.ni.bio.br/
https://www.scielo.br/ni


Cytogenetics of Megalops and Istiophorus species

Neotropical Ichthyology, 19(2): e210007, 20216/12 ni.bio.br | scielo.br/ni

The 5S rDNA sites are located in the short arms of the pair 7, in M. atlanticus and in the 
terminal region of the long arms of the pair 9, in I. platypterus (Fig. 2), both acrocentric 
chromosomes. The (TTAGGG)n probe hybridized exclusively on the terminal regions 
of the chromosomes of M. atlanticus. In some metaphases of this species, recurrent radial 
chromosome arrangements were observed (Fig. 2, larger box).

DISCUSSION

Cytogenetic data for large pelagic fishes are sporadic and usually restricted to the 
description of the diploid chromosome number (Doucette, Fitzsimons, 1988; Khuda-
Bukhsh et al., 1995; Arai, 2011). This lack of karyotype data for several groups impairs 
comparative analyzes on their chromosomal relationships and evolutionary trends. In this 
sense, this study provides classical and molecular cytogenetic data for two representative 
species, M. atlanticus and I. platypterus.

Like some other marine pelagic fishes (Accioly et al., 2012; Soares et al., 2013, 
2014), istiophorids with species with large distributions provide a valuable model on 
karyotype evolution in such ecosystem. However, as commonly found, considerable 
gaps occur with regard to their cytogenetic characteristics. All cytogenetic information 
for the Istiophoriformes Order comes down exclusively to the data presented here for 
I. platypterus. Despite this, it is feasible to compare the chromosome patterns of this 
species with phylogenetically close groups, such as the barracudas (Sphyraenidae), 

FIGURE 2 | Karyotypes of Megalops atlanticus (Megalopidae) and Istiophorus platypterus (Istiophoridae) after Giemsa staining, C-banding and 

FISH procedures. The small left boxes highlight the Ag-NORs and MM+/DAPI- sites, and the right ones the 18S (red) and 5S (green) rDNA 

sites. Scale bar = 5 µm.
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remoras (Echeneidae), archer fishes (Toxotidae), snooks (Centropomidae), jacks 
(Carangiformes), flatfishes (Pleuronectiformes), all included in a common clade, the 
Carangimorphariae one (Betancur-R. et al., 2013). It is noteworthy that a large amount of 
the Carangimorphariae species has 2n = 48 chromosomes (Arai, 2011), but a remarkable 
diversity in their structural patterns can also be found. In fact, some groups of this clade 
have exclusively 2n = 48 acrocentric chromosomes, such as Centropomidae (Borges et 
al., 2019) and Toxotidae (Supiwong et al., 2017), while other ones like Sphyraenidae 
(Soares et al., 2017), Carangidae (Accioly et al., 2012), Echeneidae (Rishi, 1973; Vasiliev, 
1980; Arkhipchuk, 1999; Accioly, 2007) and especially Pleuronectiformes (Azevedo et 
al., 2005, 2007), exhibit diversification in the karyotype number and structure.

In a broader phylogenetic context, the karyotype of I. platypterus (2m + 2st + 44a; 
NF = 52) and some features of the repetitive DNA organization in the chromosomes 
show similarities with species of the Sphyraenidae (Soares et al., 2017), and Carangidae 
(Accioly et al., 2012) families, thus supporting a phylogenetic proximity among them. 
This is true for the independent distribution of the 18S rDNA/Ag-NOR and 5S rDNA 
sites on chromosomes, a common condition found in different tribes of Carangidae, 
and also frequent in teleosts (Gornung, 2013). Besides, the terminal location of the 
18S rDNA sequences in one of the largest chromosomes of the karyotype is a shared 
characteristic with several other Carangidae groups (Accioly et al., 2012; Jacobina 
et al., 2013), thus suggesting they hold extensive homeologous linkage groups as a 
plesiomorphic condition. 

Megalops atlanticus, with habitats preferably coastal, and I. platypterus, which occurs 
in oceanic regions (Nakamura, 1985), represent model species with high migratory 
capacity in the marine environment. These species make up groups of low diversity, 
formed by one genus and two species (Fricke et al., 2020) exemplifying the small potential 
for diversification (Gaither et al., 2016), and consequently processes of slow karyotype 
evolution of large migratory species (RXS, pers. obs.) in the marine environment.

Despite the great dependence on coastal environments, the tolerance to wide 
variations in salinity and oxygen (Adams et al., 2019), migratory habits (Ault et al., 
2007) and the dispersive potential of larvae (McMillen-Jackson et al., 2005), provide 
favorable conditions for the genetic homogeneity of M. atlanticus (McMillen-Jackson 
et al., 2005). It seems that the set of these factors contributes to the karyotype sharing 
exhibited among populations of the Caribbean (Doucette, Fitzsimons, 1988), with those 
now presented for the Western Atlantic.

Megalops atlanticus shows microstructural cytogenetic traits also considered as 
plesiomorphic for several teleosts, such as reduced heterochromatic content, single 
Ag-NOR/18S rDNA sites (Galetti et al., 2000), in non-syntenic arrangement with 5S 
rDNA sequences (Gornung, 2013). On the other hand, its 2n value (2n = 50) differs 
from those found for the congeneric species, Megalops cyprinoides (Broussonet, 1782), 
distributed in the Indian and Pacific oceans (Carpenter, Niem, 2001; Nelson et al., 2016). 
In fact, karyotypes with 2n = 46 (Rishi, Haobam, 1984) and 2n = 52 chromosomes 
(Khuda-Bukhsh et al., 1995), were reported for M. cyprinoides from two different Indian 
locations, thus suggesting a more diversified evolutionary condition for this species.

Biogeographically, M. atlanticus and M. cyprinoides represent two lineages historically 
isolated by the closing of the Isthmus of Panama – 15–3.1 Mya (Coates, Obando, 1996; 
Montes et al., 2015), separating the Atlantic from the Pacific oceans, and by the Benguela 
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current – 2 Mya. (Shannon, 1985; Marlow et al., 2000), segregating the Atlantic and 
Indian marine fauna (Henriques et al., 2016). However, the opening of the Panama 
Canal, approximately 100 years ago, provided a new migration route for M. atlanticus, 
from the Caribbean Sea to the Pacific Ocean, and its wide geographical expansion 
in the Pacific Ocean extending for ~ 2600 km, from Guatemala to the Colombia / 
Ecuador border (Castellanos-Galindo et al., 2019). Given to its migratory potential, the 
biological invasion of M. atlanticus in the Pacific Ocean causes concern for biological 
conservation. Although no information on sympatry has already been reported, the 
physical contact could theoretically allow for a genetic introgression between the 
two Megalops species. However, although possible, cytogenetic data demonstrate the 
occurrence of a heterodiploid condition between them, thus potentiating possible post-
zygotic barriers (Yakimowski, Rieseberg, 2014), due to anomalous segregation of their 
chromosome sets.

Chromosomal diversification also occurs between Megalops (Megalopidae) and Elops 
(Elopidae) species, two sister clades of Elopiformes (Tab. 1), in which Elops saurus 
Linnaeus, 1766 shows 2n = 48; 6m/st + 42st/a; NF = 54 (Doucette, Fitzsimons, 1982), 
while E. smithi McBride, Rocha, Ruiz-Carus & Bowen, 2010, has 2n = 50; 6m + 4st + 
40a; NF = 60 (Sousa et al., 2019). Such differentiations in number and structure suggest 
that both fusion and fission events have played a role in the karyotype evolution of 
these Elopiformes families, although apparently associated with other complementary 
chromosome rearrangements paracentric inversions, translocations, duplications and 
deletions (Sousa et al., 2019). However, the reduced amount of cytogenetic information, 
coupled with conspicuous karyotypic differences, does not allow for accurate inferences 
on the evolutionary trends inside this order.

A significant portion of large pelagic marine fish is seriously threatened (Croll, 
Tershy, 2008) and still lacks on their genetic aspects (Manel et al., 2020), including their 
cytogenetic patterns (Soares et al., 2013). In this sense, the present results offer inedit 
and complimentary cytogenetic data about two important pelagic species, in order to 
elucidate their karyotype organization. The chromosomal aspects reflect independent 
evolutionary paths and instigate the extension of the data to other congeneric species 
and populations, thus providing valuable tools to clarify the evolutionary relationships 
still largely unknown to Elopiformes.

Order 2n Karyotype NF References

Elopiformes

Elopidae

Elops saurus 48 6m/st + 42st/a 54 Doucette, Fitzsimons (1982)

Elops smithi 50 6m + 4st + 40a 60 Sousa et al. (2019)

Megalopidae

Megalops atlanticus (Caribbean) 50 50a 50 Doucette, Fitzsimons (1988)

Megalops atlanticus (South Atlantic) 50 50a 50 Present study

Megalops cyprinoides 46 46a 46 Khuda-Bukhsh et al. (1995)

Megalops cyprinoides 52 52a 52 Rishi, Haobam (1984)

TABLE 1 | Cytogenetic data for species of Elopiformes Order.
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