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Electric eels galore: microsatellite 
markers for population studies
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Fourteen novel microsatellite loci are described and characterized in two species 
of electric eels, Electrophorus varii and E. voltai from floodplains and rivers of the 
Amazon rainforest. These loci are polymorphic, highly informative, and have the 
capacity to detect reliable levels of genetic diversity. Likewise, the high combined 
probability of paternity exclusion value and low combined probability of genetic 
identity value obtained demonstrate that the new set of loci displays suitability for 
paternity studies on electric eels. In addition, the cross-amplification of electric 
eel species implies that it may also be useful in the study of the closely related 
E. electricus, and to other Neotropical electric fishes (Gymnotiformes) species as 
tested herein.
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Catorze novos loci microsatélites são descritos e caracterizados em duas espécies 
de poraquês, Electrophorus varii e E. voltai de planícies alagadas e rios da floresta 
amazônica. Esses loci são polimórficos, altamente informativos e têm a capacidade 
de detectar níveis confiáveis de diversidade genética. Da mesma forma, o alto 
valor de exclusão de paternidade combinado com a baixa probabilidade de 
identidade genética demonstra que o novo conjunto de loci exibe adequação 
para estudos de paternidade em poraquês. Além disso, a amplificação cruzada de 
espécies de peixes elétricos implica que também pode ser útil no estudo da espécie 
intimamente relacionada E. electricus, e de outras espécies de peixes elétricos 
neotropicais (Gymnotiformes).

Palavras-chave: Diversidade genética, Electrophorus, Floresta amazônica, 
Gymnotiformes, SSR.

INTRODUCTION

Electric eels (Electrophorus Gill, 1864) share with other species of Neotropical electric 
fishes (Gymnotiformes) a specialized electrogenic-electrosensory system used to 
navigate, and communication (Crampton, 2019). In addition to low-voltage electric 
organ discharges (EODs), electric eels generate high-voltage EODs for stunning prey 
and defense, as reported in the field by Humboldt in the 18th Century, and elegantly 
demonstrated in the laboratory by Catania (2019). For centuries, electric eels captivate 
minds, inspire scientific innovation, like the electric battery, which has been used as 
a model for understanding bioelectrogenesis (Finger, Piccolino, 2011; Gallant et al., 
2014). Despite the broad public and scientific community interest, only recently species 
diversity on Electrophorus began to be explored in extent (de Santana et al., 2019). As a 
result, three electric eel species occurring in very distinct ecological environments were 
recognized: E. electricus (Linnaeus, 1766) and E. voltai de Santana, Wosiacki, Crampton, 
Sabaj, Dillman, Castro e Castro, Bastos & Vari, 2019 from Brazilian and Guyana shields 
in Highlands Amazon and E. varii de Santana, Wosiacki, Crampton, Sabaj, Dillman, 
Mendes-Júnior & Castro e Castro, 2019 from the Lowlands Amazon (de Santana et al., 
2019). 

The new finds offer an opportunity to study the genetics of populations of those 
distinct ecological and unique animals by characterizing their genetic variation, within 
and between populations, and the forces that affect their frequencies, such as migration, 
mutation, selection, and genetic drift. An excellent way to study the genetic composition 
of natural fish populations is by using molecular markers, which are powerful tools 
for quantifying genetic variation in individuals and populations, contributing to the 
management and conservation of species (Allendorf et al., 2010). According to Zane 
et al. (2002), the microsatellites (SSR – Simple Sequence Repeats), for instance, are 
considered useful for population studies because they are highly polymorphic markers. 
The population genetic analysis of species in the wild is of paramount importance for 
elucidating the factors and conditions that allow populations and species to be maintained 
and in the development of a strategy for its effective management (Moysés et al., 2005). 
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Published population genetic studies in Neotropical electric fishes are inexistent, and 
only a few attempts to develop microsatellite primers for Gymnotiformes were made 
(e.g. Moysés et al., 2005). 

This study aims to develop candidate microsatellite loci to accurately access genetic 
diversity and help in future studies of population genetics of electric eels. Thus, this 
paper reports the development and characterization of novel microsatellite loci for E. 
varii and evaluates it in E. voltai to cross-amplification. Additionally, the primers were 
tested for cross-amplification in four species across Gymnotiformes.

MATERIAL AND METHODS

A partial enriched genomic library was constructed, and microsatellites were isolated 
and characterized following the protocol of Billotte et al. (1999). Tissue samples from 
E. varii and E. voltai were donated by the Instituto Nacional de Pesquisas da Amazônia 
(INPA), with invoice number: 009/96. Total genomic DNA was extracted from 
muscle tissue from a sample of E. varii (INPA 41112), according to Almeida (Almeida 
et al., 2001). Genomic DNA (5 µg) was digested, and the blunt-ended fragments were 
ligated to the adaptors (Edwards et al., 1996). Fragments were selected, amplified, and 
cloned into pGem-T Easy (Promega; www.promega.com) vectors using 5μL of the 
amplification product, 50 ng of vector, and 1 U of T4 DNA ligase in reaction buffer 
at 4°C (overnight). Cloning products were used to transform Escherichia coli (DH5 
– α lineage) cells. The recombinant clones were selected and sequenced on an ABI 
3500 XL automated sequencer. Sequences were analyzed, and primers were designed 
according to Hall (1999) and Rozen, Skaletsky (2000), respectively. The selected 
forward primers were marked with the M13 at the 5’ end (Schuelke, 2000). To test 
the potential presence of hairpin structures and problems with the primer-dimer, we 
follow the protocol of Vallone, Butler (2004). PCR amplifications were carried out 
on a panel consisting of 13 individuals of E. varii (INPA 41112 – 41122 and INPA 
41124 – 41125) from three localities along the Curiaú River; and 14 individuals of E. 
voltai (LIA 4802 – 4806; INPA 41123; INPA 050453) – five from two localities of the 
Xingu River, one specimen collected in the Curiaú River and eight collected in the 
Iriri River. All specimens of electric eels were collected in the Amazon basin, Brazil. 
Cross-amplification tests were performed using four other Gymnotiformes species 
whose voucher specimens are deposited in the Museu de Zoologia da Universidade 
Estadual de Londrina (MZUEL) as follows: Apteronotus cf. caudimaculosus de Santana, 
2003 (n=4; MZUEL 09538; Apteronotidae); Eigenmannia trilineata López & Castello, 
1966 (n=5; MZUEL 09552; Sternopygidae); Gymnotus sylvius Albert & Fernandes-
Matioli, 1999 (n=5; MZUEL 09546; Gymnotidae); and Sternopygus macrurus (Bloch & 
Schneider, 1801) (n=5; MZUEL 09454; Sternopygidae), all collected in the Laranjinha 
River, Paraná river basin. Reactions were performed according to Apolinário-Silva et al. 
(2018). Amplifications were made with an initial denaturation step at 94ºC for 4 min, 
followed by 35 cycles at 94ºC for 40 s, 48ºC, 54ºC, or 60ºC (Tabs. 1–2) for 1 min, 72ºC 
for 1 min, and a final extension at 72ºC for 30 min. The PCR products were submitted 
to electrophoresis on an automated sequencer. GeneScan 600 Liz (Applied Biosystems) 
was used as the molecular weight standard.
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Individuals were genotyped with GeneMarker 1.85 (SoftGenetics, State College, 
PA), followed by manually editing. Tests for Hardy-Weinberg Equilibrium (HWE) 
and the presence of linkage disequilibrium among the pairs of loci were calculated 
using GENEPOP 4.0.10; P values were subsequently adjusted applying the sequential 
Bonferroni correction (Rice, 1989). GenAlEx v.6.41 was used to estimate the 
observed (Ho) and expected (He) heterozygosities and the average number of alleles 
per locus. The paternity exclusion probability (Q) (Weir, 1996) and genetic identity 
probabilities (I) (Paetkau et al., 1995) were estimated using Identity 1.0. Estimates of 
the polymorphic information content (PIC) and potential null alleles were obtained 
through Cervus v.3.0 and Micro-Checker v.2.2.3, respectively. Default settings were 
used for all tests.

RESULTS

A set of 13 polymorphic and highly informative microsatellite loci for genetic studies 
of populations of Electrophorus were developed: a total of 45 out of 96 clones sequenced 
contained microsatellite regions, with 25 being suitable for primer design and PCR 
reactions. After testing different amplification conditions, 14 loci (almost all dinucleotide 
repeats) were successfully amplified. From those, one was monomorphic, and 13 were 
polymorphic for two electric eel species. 

In E. varii, a total of 85 different alleles were detected, varied from 2 (Elec24) to 
15 (Elec39), with an average of 6.4 alleles per locus. The observed and expected 
heterozygosity ranged from 0.000 (Elec24) to 1.000 (Elec14) and from 0.334 (Elec49) 
to 0.902 (Elec39), respectively. After sequential Bonferroni correction for multiple 
comparisons (α = 0.05, k = 91), no evidence of linkage disequilibrium between any 
pair of loci examined was observed. In the HWE tests, two loci, Elec24 and Elec241, 
presented significant deviation after correction for multiple tests (sequential Bonferroni 
correction α = 0.05 and k = 14). These loci were also the only ones showing possible 
null alleles, inferred from excess homozygous genotypes, explaining the observed 
deviation from HWE. It was observed that the same loci that had a significant 
deviation in the HWE, plus loci Elec22 and Elec31, also had significant values of the 
endogamic coefficient (FIS; Tab. 1). The mean PIC for the 13 polymorphic loci was 
0.572 following a scale proposed by Botstein et al. (1980), 10 loci (Elec12, Elec14, 
Elec 21, Elec31, Elec39, Elec43, Elec53, Elec241, Elec246 and Elec247) were highly 
informative and three loci (Elec22, Elec24 and Elec49) were moderately informative. 
The probabilities of identity and paternity exclusion were equal to 2.665-12 and 0.999, 
in that order (Tab. 1).

All 14 microsatellite primers developed for E. varii were successfully cross-amplified 
in E. voltai. Thirteen are polymorphic loci and produced a total of 74 different alleles, 
with allele number ranging from 2 (Elec31 and Elec451) to 12 (Elec49), with an average 
of 5.2 alleles per locus (Tab. 2). The observed and expected heterozygosity varied 
from 0.071 (Elec12, Ele24 and Elec451) to 1.000 (Elec14) and from 0.069 (Elec451) to 
0.908 (Elec49), correspondingly. After Bonferroni sequential correction for multiple 
comparisons (α = 0.05, k = 91), no evidence of linkage disequilibrium between any pair 
of loci examined was detected. 
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Hardy-Weinberg Equilibrium deviations were significant for four loci (Elec22, 
Elec24, Elec241 and Elec247) after correction for multiple tests (sequential Bonferroni 
correction, α = 0.05 and k = 14). At the same time, these loci were the only ones 
showing null alleles (inferred from excess homozygous genotypes), which could explain 
the observed deviation from HWE. In addition, these same loci, plus Elec12 and Elec53, 
also showed significant values of the inbreeding coefficient (FIS; Tab. 2). The mean 
Polymorphic Information Content (PIC) for the 13 loci was 0.500, indicating that the 
loci set is highly informative (Tab. 2). Seven loci (Elec14, Elec39, Elec43, Elec49, Elec53, 
Elec241 and Elec246) were highly informative (PIC > 0.5); four loci (Elec22, Elec 24, 
Elec31 and Elec247) were moderately informative (PIC > 0.25 and < 0.5); and two loci 

Locus Sequence repeat Primer sequences (5' – 3')
Ta

(oC)
k

Allele 

size 

range 

(bp)

Ho He PIC (Q) (I) FIS

Genebank

Accession

numbers

Elec 12 (CA)14

F: CAGTTCAGTAGCAGGAGTATACAGG
52° 7 203 – 241 0.769 0.692 0.661 0.483 0.125 -0.071 MN967054

R: TTAGTGTGAGGTGGATTAACAATG

Elec14 (TG)28

F: GCTCTGTTGTGGTACGGC
52° 9 191 – 260 1.000 0.795 0.774 0.663 0.049 -0.216 MN967055

R: TGACTCGCAGGCTAACAGG

Elec22 (TG)15

F: GGAGCAGCAACCGGACTC
48° 4 171 – 177 0.231 0.388 0.363 0.214 0.399 0.437* MN967056

R: GGCACTACAGTCTCCTCCAA

Elec24 (GT)13(GAAA)4

F: GATACTTCGAGCTCACGTCTTAG

R: TCCTCATGTATCCCATTACCAAG
56° 2 214 – 216 0.000 0.355 0.292 0.146 0.479 1.000* MN967057

Elec31 (AG)18

F: TTGATCATTTAGCGTGGACTTAAC
45° 5 144 – 166 0.538 0.751 0.711 0.524 0.102 0.319* MN967058

R: AGGCCACACTACTAATCAGAACG

Elec39 (GT)37

F: TCCAGGGACAGGACGTTG
56° 15 166 – 228 0.846 0.902 0.895 0.805 0.017 0.102 MN967059

R: TCCAGCACACTCAGGTAGAGG

Elec43 (TG)16

F: CCTGTTAGGCTGGTTAGATAATATG
60° 5 263 – 279 0.769 0.701 0.649 0.451 0.141 0.057 MN967060

R: CAAGAAGCTAGACGCCATGC

Elec49 (GT)17

F: ACTATCAGGTCTCAAAGGATTTTC
56° 4 178 – 202 0.231 0.334 0.317 0.184 0.460 0.345 MN96705461

R: GAGCACAGATCTGGTCATCTAGG

Elec53 (GA)10(TG)8(AG)19

F: GCAATATGATTCTGTTTGACTTCG
52° 6 177 – 225 0.692 0.710 0.662 0.472 0.131 0.064

MN967062

R: GCACTGCCTGACAGATGG

Elec241 (GT)14

F: CTGGTGGAGTTGATTACAGAGAG
56° 8 147 – 215 0.455 0.740 0.706 0.604 0.070 0.245* MN967063

R: ACACTAACATATCCATCCACAAAG

Elec244 (TG)14

F: GAGGTGGATTAACAATGTAAACTGG
56° 8 202 – 243 0.714 0.769 0.732 0.567 0.084 0.024 MN967064

R: CAGTTCAGTAGCAGGAGTATACAGG

Elec246 (TG)24

F: CTCGGTCCTCCAGTCTTGC
52° 4 280 – 338 0.692 0.678 0.613 0.400 0.168 0.018 MN967065

R: GTGACTCGCAGGCTAACAGG

Elec247 (TG)13

F: TTAGTGTGAGGTGGATTAACAATG
56° 7 156 – 196 0.538 0.689 0.639 0.450 0.146 0.256 MN967066

R: CATACATATGCACGTTCTCTTGC

Elec451 (GT)14

F: GTAAGGAGAGCCGACAGCAC
52° 1 169 – – – – – – MN967067

R: AAGGCAGTGTTGGAGTCACC

All loci 85 0.538 0.607 0.572 0.999 2.665-12 0.153*

TABLE 1 | Description and characterization of 14 microsatellite loci isolated from Electrophorus varii. Flanking primers, Ta = optimal 

annealing temperatures, k = number of alleles, Ho = observed heterozygosity, He = expected heterozygosity estimated from 13 individuals, 

Q = paternity exclusion probability, I = probability of genetic identity, F
IS

 = endogamy coefficient, PIC = polymorphic information content, 

GenBank accession numbers. * Significant value for the endogamy coefficient (F
IS

).
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(Elec12 and Elec451) had low informative potential (PIC < 0.2). The loci set showed 
a low value of genetic identity combined probability (2.9x10-11) and high-shared 
probabilities of paternity exclusion (0.999), which suggest a high discriminatory power 
for population genetic studies (Tab. 2). 

Cross-amplification testing of all 14 Electrophorus loci in four other Gymnotiformes was 
conducted. Six microsatellite loci successfully amplified in Apteronotus albifrons (Linnaeus, 
1766) (Elec12, Elec39, Elec49, Elec53, Elec247 and Elec451) and E. trilineata (Elec12, Elec14, 
Elec39, Elec49, Elec247, Elec451). Three effectively worked in G. sylvius (Elec12, Elec53, 
Elec247), and two in S. macrurus (Elec12, Elec49). The locus Elec12 was polymorphic for 
all species tested, ranging from three (G. sylvius and S. macrurus) to five (A. albifrons and E. 
trilineata) alleles per locus. Elec47 presented four alleles in G. sylvius, three in A. albifrons, 
and two in E. trilineata. On the other hand, the microsatellite loci Elec14, Elec39, and 
Elec451 were monomorphic for tested species, and loci Elec22, Elec24, Elec31, Elec43, 
Elec241, and Elec244, did not amplify for any of the four tested species.

DISCUSSION

Deviations of the HWE and significant FIS values for some loci, mainly in E. voltai, are 
likely to be caused by the mixture of individuals originating from different populations. 
Freeland (2005) suggested that the inclusion of elements of multiple genetic units in a 
single panel could cause the Wahlund effect, i.e., excess homozygosity and significant 
estimations of FIS. Similar results were observed by Apolinário-Silva et al. (2018), which 

Locus name k Allele size range (bp) Ho He PIC (Q) (I) FIS

Elec12 3 203 – 211 0.071 0.135 0.131 0.068 0.752 0.500*

Elec14 6 209 – 260 1.000 0.719 0.679 0.492 0.119 -0.358

Elec22 4 173 – 179 0.143 0.403 0.364 0.209 0.395 0.666*

Elec24 3 212 – 216 0.071 0.564 0.466 0.266 0.287 0.881*

Elec31 2 148 – 166 0.500 0.375 0.305 0.152 0.460 -0.300

Elec39 6 150 – 172 0.857 0.760 0.724 0.547 0.093 -0.090

Elec43 7 251 – 315 0.760 0.791 0.724 0.594 0.074 0.228

Elec 49 12 220 – 242 0.786 0.908 0.901 0.812 0.015 0.171

Elec53 8 199 – 225 0.643 0.832 0.811 0.668 0.048 0.261*

Elec241 10 161 – 191 0.538 0.861 0.846 0.749 0.027 0.408*

Elec244 1 212 0.000 0.000 – – – –

Elec246 5 280 – 362 0.500 0.548 0.516 0.338 0.236 0.125

Elec247 5 154 – 162 0.214 0.508 0.478 0.306 0.272 0.602*

Elec451 2 169 – 177 0.071 0.069 0.067 0.033 0.869 0.001

All loci 74 – 0.429 0.532 0.500 0.999 2.981-11 0.228*

TABLE 2 | Cross-amplification of 14 microsatellite loci and genetic diversity per locus in Electrophorus 

voltai. Flanking primers, k = number of alleles, Ho = observed heterozygosity, He = expected 

heterozygosity estimated from 14 individuals, Q = paternity exclusion probability, I = probability of 

genetic identity, F
IS

 = endogamy coefficient, PIC = polymorphic information content. * Significant value 

for the endogamy coefficient (F
IS

).
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used a panel consisting of 34 individuals derived from genetically distinct units for 
microsatellite validation. 

Microsatellite primers are generally highly species-specific (Zane et al., 2002). 
However, we have verified that all 14 primers pairs, developed for Electrophorus varii, 
satisfactorily amplify for E. voltai. The cross-species amplification implies that it may 
also be useful in E. electricus (which is more closely related to E. voltai – see de Santana 
et al., 2019) as well as in other Gymnotiformes species not tested herein. Heterologous 
primers can be successfully used in different species of fishes, and the quality of 
amplification depends on the degree of genetic conservation of positions bordering 
microsatellite regions (Abdul-Muneer, 2014). Consequently, the low amplification 
rate primers in the four species of Gymnotiformes can be explained by the lack of 
conservation of microsatellite sites. Equally, the successful amplification described in E. 
voltai can be attributed to the elevate conservation of the microsatellite flanking regions, 
which according to Barbará et al. (2007), is expected among closely related species. 
Accordingly, the lowest cross-amplification found for Gymnotus, currently hypothesized 
as the putative sister taxon to Electrophorus (Alda et al., 2018), was unexpected (see 
discussion on Electrophorus interrelationships in de Santana et al., 2019), indicating that 
Electrophorus current hypothesis of interrelationships deserves further attention.
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