Pedro H.C. Pereira1
,
Luís G.F. Côrtes1,2,
Gislaine V. Lima1,
Erandy Gomes1,2,3,
Antonio V.F. Pontes1,
Felipe Mattos3,
Maria E. Araújo2,3,
Flávio F. Junior4 and
Cláudio L.S. Sampaio4
PDF: EN XML: EN | Supplementary: S1 | Cite this article
Abstract
Coral reefs harbor one of the largest fish biodiversity on earth; yet information on reef fishes is still absent for many regions. We analyzed reef fish richness, distribution, and conservation on the largest Brazilian multiple use coastal MPA; which cover a large extent of coral reefs at the SWA. A total of 325 fish species have been listed for MPA Costa dos Corais, including Chondrichthyes (28 species) and Actinopterygii (297). Fish species were represented by 81 families and the most representative families were Carangidae (23 species), Labridae (21) and Gobiidae (15). The MPA fish richness represented 44% of all recorded fish species of the Southwestern Atlantic Ocean (SWA) highlighting the large-scale importance of this MPA. A total of 40 species (12%) are registered at Near Threatened (NT), Vulnerable (VU), Endangered (EN) or Critically Endangered (CR). This study reinforces the importance of MPA Costa dos Corais on reef fish biodiversity and conservation and emphasize the urgent need of conservation strategies.
Keywords: Conservation Unit, Coral Reefs, Fish community, Ichthyofauna, Management Plan.
Os recifes de coral abrigam uma das maiores biodiversidades de peixes do planeta; no entanto, as informações sobre peixes de recife ainda estão ausentes em muitas regiões. Analisamos a riqueza, distribuição e a conservação de peixes recifais na maior Área de Proteção Ambiental (APA) costeira de uso múltiplo do Brasil; área que possui grande extensão de recifes de corais no SWA. Um total de 325 espécies de peixes foram listadas para APA Costa dos Corais, incluindo Chondrichthyes (28 espécies) e Actinopterygii (297). As espécies de peixes foram representadas por 81 famílias e as famílias mais representativas foram Carangidae (23 espécies), Labridae (21) e Gobiidae (15). A riqueza de peixes da APA representou 44% de todas as espécies de peixes registradas no Oceano Atlântico Sudoeste (SWA), destacando a importância em grande escala desta APA. Um total de 40 espécies (12%) estão registradas como Quase Ameaçada (NT), Vulnerável (VU), Em Perigo (EN) ou Criticamente Em Perigo (CR). Este estudo reforça a importância da APA Costa dos Corais na biodiversidade e conservação dos peixes recifais e enfatiza a necessidade urgente de estratégias de conservação.
Palavras-chave: Comunidade de peixes, Ictiofauna, Plano de manejo, Recifes de coral, Unidade de conservação.
Introduction
Coral reefs are amongst the most relevant ecosystems on Earth with the greatest biodiversity of all marine habitats (Moberg, Folke, 1999; Adey, 2000). In addition to harbor a rich biodiversity, coral reefs are crucial both ecologically and economically, providing several services, such as fish stocks and coastal protection (Brander et al., 2007; Paula et al., 2018). The use of coral reefs, whether for tourism or fishing, is a notable attraction for the industry (Davenport, Davenport, 2006; Cowburn et al., 2018), raising billions of Coral reefs are amongst the most relevant ecosystems on Earth with the greatest biodiversity of all marine habitats (Moberg, Folke, 1999; Adey, 2000). In addition to harbor a rich biodiversity, coral reefs are crucial both ecologically and economically, providing several services, such as fish stocks and coastal protection (Brander et al., 2007; Paula et al., 2018). The use of coral reefs, whether for tourism or fishing, is a notable attraction for the industry (Davenport, Davenport, 2006; Cowburn et al., 2018), raising billions of dollars annually and benefiting around 450 million people in 109 countries (Moberg, Folke, 1999; Pandolfi et al., 2011; Spalding et al., 2017).
Brazil has the unique coral reefs with many representative endemics to the southwest Atlantic Ocean (Ferreira et al., 2013; Leão et al., 2016). These ecosystems differ from reefs around the world due to the absence of natural disasters, low species richness; yet they present high endemism and high levels of sedimentation (Leão et al., 2003; Leão et al., 2016; Soares et al., 2021). Despite this ecological relevance, Brazilian reefs are still poorly investigated and data on biodiversity assessment of corals and reef fishes are still absent for several regions, including many Marine Protected Areas (MPAs) (Sampaio et al., 2016).
Reef ecosystems harbor a high diversity of fish species (Reaka-Kudla, 1997) and the close relationship of fish and reef environments has been extensively described in the last decades (see Mora,2015 for a review). Reef fish communities are driven by multiple factors such as depth, wave exposure, latitude, and benthic structure (Gibran, Moura, 2012; Pereira et al.,2014; Leal et al., 2015; Pinheiro et al., 2018). However, human influence has also been currently considered one important factor affecting reef fish community and how management strategies are implemented seem to directly drive reef fish diversity on coral reefs (Graham et al., 2017; Ruppert et al., 2018). In this scenario, the creation of MPAs along with adequate zoning process such as multiple use areas, or restricting any type of exploration, such as no-take zones, rises as a vital reef fish conservation strategy worldwide (Mora et al., 2006; Francini-Filho, Moura, 2008; Emslie et al., 2015; Hall et al., 2021).
During the last decades, the number of studies regarding reef fishes in Brazilian waters extensively increased. Many recent studies described several new fishes, from cryptic species (Smith-Vaniz et al., 2018; Carvalho-Filho et al., 2020) to large elasmobranchs (Gomes et al., 2000; Petean et al., 2020) and aimed to understand the relationship of community dynamics and environmental factors (Gibran, Moura, 2012; Pereira et al., 2014; Andrades et al., 2018; Matheus et al., 2019), fishing effects (Floeter et al., 2006; Rolim et al., 2019) and human induced behavior (Benevides et al., 2019; Pereira et al., 2020). In this context, Pinheiro et al. (2018) recently revealed a very rich reef fish fauna at Southwestern Atlantic Ocean (SWA) with a total of 733 fish species, 405 are SWA resident reef fishes, of which 111 (27%) are endemics and 78 (19%) are globally threatened.
Nevertheless, despite substantial increase in knowledge regarding reef fish systematic, ecology, biogeography and evolution on the Southwestern Atlantic (Floeter et al., 2008; Morais et al., 2017; Smith-Vaniz et al., 2018; Lellys et al., 2019; Cordeiro et al., 2021; Moura et al., 2021), several large reef areas in the SWA remained unknown and poorly studied until recently (Freitas, Lotufo, 2014; Pinheiro et al., 2014; Anderson et al., 2014 Pinheiro et al., 2015; Pereira et al., 2018; Guabiroba et al., 2020; Araújo et al., 2020). Hence, this study analyzed reef fishes biodiversity on the largest Brazilian multiple use coastal MPA and provided insights on fishes depth distribution, dispersal potential, IUCN red list categories and trophic/functional groups. Additionally, aspects of conservation and distribution of reef fishes inside MPA Costa dos Corais are also discussed.
Material and methods
Study area. Marine Protect Area (MPA) “Costa dos Corais” (APACC) is the largest Brazilian coastal MPA created to protect coral reef systems on Brazilian waters. This MPA stretches from 120 km in the Northeast Brazil encompassing two states and 12 municipalities (Maida, Ferreira, 1997; Miranda et al., 2020) (Fig. 1). MPA Costa dos Corais covers a large range of different ecosystems such as shallow reefs, mangroves, seagrass beds, rhodolith/sponge beds and mesophotic reefs (Fig. 2) from the coast to the break of the continental shelf (Maida, Ferreira, 1997; Pereira et al., 2018) (Figs. 1–2).
FIGURE 1 | Long-term sampling sites at Marine Protected Area (MPA) “Costa dos Corais” – South America.
The multiple use MPA corresponds to an IUCN category VI protected area, where sustainable use is admitted according to its management plan, published in 2013 (ICMBio, 2013). A new version of the management plan elaborated by managers in partnership with local NGOs, researchers, fishers, and touristic trade has just been published (ICMBio, 2021). APACC zoning plan is probably the best strategy to promote coral reefs conservation locally with some areas selected as “no take zones” (all human activities, except research, are prohibited), some touristic areas (only low impact visiting activities allowed) and large multiple use locations (fishing and tourists allowed).
FIGURE 2 | Multiple habitats at MPA Costa dos Corais highlighting ecologically important areas for reef fishes biodiversity within the MPA. A. Deeper reefs (> 30 m depth) with predominance of the hard coral Montastraea cavernosaB. Shallow reefs (< 30 m depth) with dominance of hydrocoral Millepora alcicornis and Brazilian endemic brain coral Mussumila hartii. C. Sponge reefs with predominance of tube sponges from the genus Aplysina.
Sampling design. Present study data represents a decadal field work effort (initiated in 2010) collecting reef fish information inside the MPA with multiple sampling techniques such as, remotely operated underwater vehicle (ROV), baited remote underwater video (BRUV) and scuba diving/transects. A total of 125 sampling sites distributed on MPA from 3 to 70 m depth have been investigated in more than 500 dives and 1000 belt transects (Fig. 1). Species were listed from our database (long term monitoring throughout the MPA since 2010), artisanal fisheries landing and based on literature (Pinheiro et al., 2018), and authors personal information. Vouchers specimens are listed in Tab. S1.
Species categorization. All recorded species were categorized according to depth distribution, dispersal potential, IUCN (2020) red list category, trophic and functional group as follow: Depth distribution: According to depth distribution species were categorize as: Very shallow (0–10 m), Shallow (10–25 m), Middle (25–50 m), Deep (50–100 m), and Very deep (> 100 m). Dispersal potential: Live birth, pelagic larvae/young, Demersal egg, no pelagic phase, Demersal egg, Balistid-type, demersal egg, Brooded egg, Semipelagic to Pelagic adults, Pelagic eggs and Unknown. IUCN Red list Categories: According to 2020 IUCN red list of threatened species, taxa are classified as: Not Evaluated (NE), Data Deficient (DD), Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN), and Critically Endangered (CR). Trophic Categories: Species were classified according to their trophic categories based on literature (Ferreira et al., 2004; Pinheiro et al., 2018) and complementary data: Macro-carnivores, Mobile benthic invertivores/cleaners, Sessile invertivores, Omnivores, Herbivore/detritivores, Piscivores and Planktivores. Functional groups: Species were classified according to their functional groups based on the literature (Pinheiro et al., 2018) and complementary data: Macro-carnivores, Strict Piscivores, Mobile benthic invertivores/cleaners, Sessile invertivores, Sand invertivores, Spongivores, Diurnal planktivores, Nocturnal planktivores, Territorial Algae/detritus, Turf grazing, Scrapers, Excavator/eroders, Macroalgae browser and General omnivores.
Results
A total of 325 fish species have been listed for MPA Costa dos Corais, including Chondrichthyes (28 species) and Actinopterygii (297). This total was represented by 81 families, being the most representative: Carangidae (23 species), Labridae (21), Gobiidae (15), Haemulidae (14), Carcharhinidae (11) and Gerreidae/Ephinephelidae (10) (Tab. 1; Tab. S1). According to depth categories, most species inhabited Middle (120 species) and Shallow (108) areas, while the remaining categories account for 97 species altogether (Fig. 3A).
Taxa were grouped according to the dispersion potential, the most abundant categories were: Pelagic egg (205), followed by Demersal egg (40), Live birth, pelagic larvae/young (31) and Semipelagic to Pelagic adults (27) (Fig. 3B).
Considering IUCN red list categories, most of the species were classified as Least Concern (254 species), followed by Data Deficient (23) and Near Threatened (17). Species classified within threatened categories were mainly Vulnerable (15). Only eight species were Endangered (5) and Critically Endangered (3) (Fig. 3C).
For trophic groups, the most abundant category was Mobile benthic invertivores/cleaners – MINV (133 species), followed by Macro-carnivores – MCAR (107) and Planktivores (29) (Fig. 3D).
Regarding functional groups, the most abundant category was Mobile benthic invertivores/cleaners (115 species), followed by Macro-carnivores (87), Diurnal planktivores (26), Strict Piscivores/Sand invertivores (19 each) and General omnivores (18) (Fig. 3E).
TABLE 1 | Reef fishes biodiversity at the largest Brazilian coastal marine protection area (MPA Costa dos Corais). Depth category – VSHALL, 0–10 m; SHALL, 10–25 m; MID, 25–50 m; DEEP, 50–100 m; VDEEP, > 100 m. Dispersal potential – LIV: Live birth, pelagic larvae/Young; DNP: Demersal egg, no pelagic phase; DEG: Demersal egg; BAL, Balistid-type, demersal egg; BRO, Brooded egg; PAL: Semipelagic to Pelagic adults; PEL: Pelagic eggs; UK: Unknown. IUCN category – DD: Data deficient; LC: Least Concern; NT: Near Threatened; VU: Vulnerable; EN: Endangered; CR: Critically Endangered; NE: Not evaluated. Trophic category – MCAR: Macro-carnivores; MINV: Mobile benthic invertivores/cleaners; SINV: Sessile invertivores; OMNI: Omnivores; HERB: Herbivore/detritivores; PLANK: Planktivores. Functional group – MCAR: Macro-carnivores; PIS: Strict Piscivores; MINV: Mobile benthic invertivores/cleaners; SINV: Sessile invertivores; SAND: Sand invertivores; SPON: Spongivore; DPLA: Diurnal planktivores; NPLA: Nocturnal planktivores; THER: Territorial Algae/detritos; TRUF: Turf grazing; SCRP: Scrapers; EXCV: Excavator/eroders; MALG: Macroalgae browser; OMNI: General omnivores.
Number
Number | Group | Family | Species | Authorship | Depth category | Dispersal potential | IUCN category | Trophic category | Functional group |
1 | Chondrichthyes | Ginglymostomatidae | Ginglymostoma cirratum | (Bonnaterre, 1788) | MID | LIV | DD | MCAR | MCAR |
2 | Chondrichthyes | Rhincodontidae | Rhincodon typus | Smith, 1828 | VDEEP | LIV | EN | PLANK | DPLA |
3 | Chondrichthyes | Triakidae | Mustelus higmani | Springer & Lowe, 1963 | SHALL | LIV | LC | MINV | MINV |
4 | Chondrichthyes | Carcharhinidae | Carcharhinus acronotus | (Poey, 1860) | DEEP | LIV | NT | MCAR | MCAR |
5 | Chondrichthyes | Carcharhinidae | Carcharhinus falciformis | (Bibron, 1839) | VDEEP | LIV | VU | MCAR | MCAR |
6 | Chondrichthyes | Carcharhinidae | Carcharhinus leucas | (Valenciennes, 1839) | MID | LIV | NT | MCAR | MCAR |
7 | Chondrichthyes | Carcharhinidae | Carcharhinus limbatus | (Valenciennes, 1839) | VDEEP | LIV | NT | MCAR | MCAR |
8 | Chondrichthyes | Carcharhinidae | Carcharhinus obscurus | (LeSueur, 1818) | VDEEP | LIV | EN | MCAR | MCAR |
9 | Chondrichthyes | Carcharhinidae | Carcharhinus perezi | (Poey, 1876) | MID | LIV | NT | MCAR | MCAR |
10 | Chondrichthyes | Carcharhinidae | Carcharhinus plumbeus | (Nardo, 1827) | DEEP | LIV | VU | MCAR | MCAR |
11 | Chondrichthyes | Galeocerdonidae | Galeocerdo cuvier | (Péron & LeSueur, 1822) | DEEP | LIV | NT | MCAR | MCAR |
12 | Chondrichthyes | Carcharhinidae | Negaprion brevirostris | (Poey, 1868) | MID | LIV | NT | MCAR | MCAR |
13 | Chondrichthyes | Carcharhinidae | Rhizoprionodon lalandii | (Valenciennes, 1839) | MID | LIV | DD | MCAR | MCAR |
14 | Chondrichthyes | Carcharhinidae | Rhizoprionodon porosus | (Poey, 1861) | MID | LIV | LC | MCAR | MCAR |
15 | Chondrichthyes | Sphyrnidae | Sphyrna lewini | (Griffith & Smith, 1834) | VDEEP | LIV | CR | MCAR | MCAR |
16 | Chondrichthyes | Sphyrnidae | Sphyrna mokarran | (Rüppel, 1837) | VDEEP | LIV | CR | MCAR | MCAR |
17 | Chondrichthyes | Sphyrnidae | Sphyrna tiburo | (Linnaeus, 1758) | SHALL | LIV | LC | MCAR | MCAR |
18 | Chondrichthyes | Pristidae | Pristis pristis | (Linnaeus, 1758) | SHALL | LIV | CR | MCAR | MCAR |
19 | Chondrichthyes | Dasyatidae | Hypanus berthalutzae | Petean, Naylor & Lima, 2020 | SHALL | LIV | DD | MINV | SAND |
20 | Chondrichthyes | Dasyatidae | Hypanus guttatus | (Bloch & Schneider, 1801) | SHALL | LIV | DD | MINV | SAND |
21 | Chondrichthyes | Dasyatidae | Hypanus marianae | (Gomes, Rosa & Gadig, 2000) | SHALL | LIV | DD | MINV | SAND |
22 | Chondrichthyes | Gymnuridae | Gymnura micrura | (Bloch & Schneider, 1801) | MID | LIV | DD | MINV | MINV |
23 | Chondrichthyes | Urotrygonidae | Urotrygon microphthalmum | Delsman, 1941 | MID | LIV | LC | MINV | SAND |
24 | Chondrichthyes | Mobulidae | Mobula birostris | (Walbaum, 1792) | DEEP | PEL | VU | PLANK | DPLA |
25 | Chondrichthyes | Mobulidae | Mobula mobular | (Bonnaterre, 1788) | DEEP | PEL | EN | PLANK | DPLA |
26 | Chondrichthyes | Mobulidae | Mobula tarapacana | (Philippi, 1892) | DEEP | PEL | EN | PLANK | DPLA |
27 | Chondrichthyes | Aetobatidae | Aetobatus narinari | (Euprasen, 1790) | MID | LIV | NT | MCAR | SAND |
28 | Chondrichthyes | Rhinopteridae | Rhinoptera bonasus | (Mitchill, 1815) | VDEEP | LIV | NT | MINV | SAND |
29 | Osteichthyes | Elopidae | Elops saurus | Linnaeus, 1766 | MID | PEL | LC | MCAR | MCAR |
30 | Osteichthyes | Megalopidae | Megalops atlanticus | Valenciennes, 1847 | MID | PEL | VU | MCAR | MCAR |
31 | Osteichthyes | Albulidae | Albula nemoptera | (Fowler, 1911) | MID | PEL | DD | MINV | SAND |
32 | Osteichthyes | Albulidae | Albula vulpes | (Linnaeus, 1758) | SHALL | PEL | NT | MINV | SAND |
33 | Osteichthyes | Muraenidae | Enchelycore carychroa | Böhlke & Böhlke, 1976 | MID | PEL | LC | MCAR | MCAR |
34 | Osteichthyes | Muraenidae | Enchelycore nigricans | (Bonnaterre, 1788) | SHALL | PEL | LC | MCAR | MCAR |
35 | Osteichthyes | Muraenidae | Gymnothorax funebris | Ranzani, 1839 | SHALL | PEL | LC | MCAR | MCAR |
36 | Osteichthyes | Muraenidae | Gymnothorax miliaris | (Kaup, 1856) | SHALL | PEL | LC | MCAR | MCAR |
37 | Osteichthyes | Muraenidae | Gymnothorax moringa | (Cuvier, 1829) | SHALL | PEL | LC | MCAR | MCAR |
38 | Osteichthyes | Muraenidae | Gymnothorax ocellatus | Agassiz, 1831 | SHALL | PEL | LC | MCAR | MCAR |
39 | Osteichthyes | Muraenidae | Gymnothorax vicinus | (Castelnau, 1855) | SHALL | PEL | LC | MCAR | MCAR |
40 | Osteichthyes | Muraenidae | Muraena pavonina | Richardson, 1845 | SHALL | PEL | LC | MCAR | MCAR |
41 | Osteichthyes | Ophichthidae | Ahlia egmontis | (Jordan, 1884) | VSHALL | PEL | LC | MINV | MINV |
42 | Osteichthyes | Ophichthidae | Myrichthys breviceps | (Richardson, 1848) | VSHALL | PEL | LC | MINV | MINV |
43 | Osteichthyes | Ophichthidae | Myrichthys ocellatus | (Lesueur, 1825) | VSHALL | PEL | LC | MINV | MINV |
44 | Osteichthyes | Ophichthidae | Ophichthus cylindroideus | (Ranzani,1839) | SHALL | PEL | LC | MINV | MINV |
45 | Osteichthyes | Ophichthidae | Ophichthus ophis | (Linnaeus, 1758) | VSHALL | LIV | LC | MINV | MINV |
46 | Osteichthyes | Congridae | Heteroconger camelopardalis | (Lubbock, 1980) | MID | PEL | LC | PLANK | DPLA |
47 | Osteichthyes | Engraulidae | Anchoa filifera | (Fowler, 1915) | SHALL | PEL | LC | PLANK | DPLA |
48 | Osteichthyes | Engraulidae | Anchoa januaria | (Steindachner, 1879) | SHALL | PEL | LC | PLANK | DPLA |
49 | Osteichthyes | Engraulidae | Anchoa spinifer | (Valenciennes, 1848) | SHALL | PEL | LC | PLANK | DPLA |
50 | Osteichthyes | Engraulidae | Anchoa tricolor | (Spix & Agassiz, 1829) | SHALL | PEL | LC | PLANK | DPLA |
51 | Osteichthyes | Engraulidae | Anchovia clupeoides | (Swainson, 1839) | SHALL | PEL | LC | PLANK | DPLA |
52 | Osteichthyes | Engraulidae | Anchoviella lepidentostole | (Fowler, 1911) | SHALL | PEL | LC | PLANK | DPLA |
53 | Osteichthyes | Engraulidae | Lycengraulis grossidens | (Spix & Agassiz, 1829) | SHALL | PEL | LC | PLANK | DPLA |
54 | Osteichthyes | Ariidae | Bagre marinus | (Mitchill, 1815) | MID | BRO | LC | MCAR | MCAR |
55 | Osteichthyes | Synodontidae | Synodus foetens | (Linnaeus, 1766) | VSHALL | PEL | LC | MCAR | MCAR |
56 | Osteichthyes | Synodontidae | Synodus intermedius | (Spix & Agassiz, 1829) | VSHALL | PEL | LC | MCAR | MCAR |
57 | Osteichthyes | Synodontidae | Synodus synodus | (Linnaeus, 1758) | VSHALL | PEL | LC | MCAR | MCAR |
58 | Osteichthyes | Synodontidae | Trachinocephalus myops | (Forster, 1801) | MID | PEL | LC | MCAR | MCAR |
59 | Osteichthyes | Holocentridae | Holocentrus adscensionis | (Osbeck, 1765) | SHALL | PEL | LC | MINV | MINV |
60 | Osteichthyes | Holocentridae | Myripristis jacobus | Cuvier, 1829 | SHALL | PEL | LC | MINV | MINV |
61 | Osteichthyes | Holocentridae | Plectrypops retrospinis | (Guichenot, 1853) | MID | PEL | LC | MINV | MINV |
62 | Osteichthyes | Bythitidae | Petrotyx sanguineus | (Meek & Hildebrand, 1928) | MID | PEL | LC | MINV | MINV |
63 | Osteichthyes | Batrachoididae | Amphichthys cryptocentrus | (Valenciennes, 1837) | SHALL | DNP | LC | MCAR | MCAR |
64 | Osteichthyes | Batrachoididae | Thalassophryne nattereri | Steindachner, 1876 | SHALL | DNP | LC | MINV | MINV |
65 | Osteichthyes | Apogonidae | Apogon americanus | Castelnau, 1855 | SHALL | BRO | NE | PLANK | NPLA |
66 | Osteichthyes | Apogonidae | Astrapogon puncticulatus | (Poey, 1867) | SHALL | BRO | LC | PLANK | NPLA |
67 | Osteichthyes | Apogonidae | Phaeoptyx pigmentaria | (Poey, 1860) | SHALL | BRO | LC | PLANK | NPLA |
68 | Osteichthyes | Eleotridae | Eleotris pisonis | (Gmelin, 1789) | SHALL | PEL | LC | MINV | MINV |
69 | Osteichthyes | Eleotridae | Erotelis smaragdus | (Valenciennes, 1837) | SHALL | PEL | LC | MINV | MINV |
70 | Osteichthyes | Gobiidae | Barbulifer ceuthoecus | (Jordan & Gilbert, 1884) | VSHALL | DEG | LC | MINV | MINV |
71 | Osteichthyes | Gobiidae | Bathygobius geminatus | Tornabene, Baldwin & Pezold, 2010 | VSHALL | DEG | DD | MINV | MINV |
72 | Osteichthyes | Gobiidae | Bathygobius soporator | (Valenciennes, 1837) | VSHALL | DEG | LC | MINV | MINV |
73 | Osteichthyes | Gobiidae | Coryphopterus dicrus | Böhlke & Robins, 1960 | VSHALL | DEG | LC | MINV | MINV |
74 | Osteichthyes | Gobiidae | Coryphopterus glaucofraenum | Gill, 1863 | SHALL | DEG | LC | MINV | MINV |
75 | Osteichthyes | Gobiidae | Ctenogobius boleosoma | (Jordan & Gilbert, 1882) | SHALL | DEG | LC | MINV | MINV |
76 | Osteichthyes | Gobiidae | Ctenogobius saepepallens | (Gilbert & Randall, 1968) | VSHALL | DEG | LC | MINV | MINV |
77 | Osteichthyes | Gobiidae | Elacatinus figaro | Sazima, Moura & Rosa, 1997 | MID | DEG | VU | MINV | MINV |
78 | Osteichthyes | Gobiidae | Gnatholepis thompsoni | Jordan, 1904 | SHALL | DEG | LC | MINV | MINV |
79 | Osteichthyes | Gobiesocidae | Gobiesox barbatulus | Starks, 1913 | VSHALL | DEG | LC | MINV | MINV |
80 | Osteichthyes | Gobiesocidae | Gobiesox strumosus | Cope, 1870 | VSHALL | DEG | LC | MINV | MINV |
81 | Osteichthyes | Gobiidae | Gobionellus stomatus | Starks, 1913 | SHALL | DEG | LC | MINV | MINV |
82 | Osteichthyes | Gobiidae | Lythrypnus brasiliensis | Greenfield, 1988 | SHALL | DEG | NE | MINV | MINV |
83 | Osteichthyes | Gobiidae | Microgobius carri | Fowler, 1945 | SHALL | DEG | LC | MINV | MINV |
84 | Osteichthyes | Microdesmidae | Ptereleotris randalli | Gasparini, Rocha & Floeter, 2001 | MID | DEG | LC | PLANK | DPLA |
85 | Osteichthyes | Grammatidae | Gramma brasiliensis | Sazima, Gasparini & Moura, 1998 | MID | BRO | NT | MINV | MINV |
86 | Osteichthyes | Pomacanthidae | Centropyge aurantonotus | Burgess, 1974 | VDEEP | PEL | LC | HERB | THER |
87 | Osteichthyes | Pomacanthidae | Holacanthus ciliaris | (Linnaeus, 1758) | MID | PEL | LC | SINV | SPON |
88 | Osteichthyes | Pomacanthidae | Holacanthus tricolor | (Bloch, 1795) | MID | PEL | LC | SINV | SPON |
89 | Osteichthyes | Pomacanthidae | Pomacanthus arcuatus | (Linnaeus, 1758) | MID | PEL | LC | SINV | SPON |
90 | Osteichthyes | Pomacanthidae | Pomacanthus paru | (Bloch, 1787) | SHALL | PEL | LC | SINV | SPON |
91 | Osteichthyes | Pomacentridae | Abudefduf saxatilis | (Linnaeus, 1758) | SHALL | DEG | LC | OMNI | OMNI |
92 | Osteichthyes | Pomacentridae | Chromis flavicauda | (Günther, 1880) | VDEEP | PEL | DD | PLANK | DPLA |
93 | Osteichthyes | Pomacentridae | Chromis jubauna | Moura, 1995 | VDEEP | PEL | NE | PLANK | DPLA |
94 | Osteichthyes | Pomacentridae | Azurina multilineata | (Guichenot, 1853) | SHALL | PEL | LC | PLANK | DPLA |
95 | Osteichthyes | Pomacentridae | Microspathodon chrysurus | (Cuvier, 1830) | SHALL | DEG | LC | HERB | THER |
96 | Osteichthyes | Pomacentridae | Stegastes fuscus | (Cuvier, 1830) | SHALL | DEG | LC | HERB | THER |
97 | Osteichthyes | Pomacentridae | Stegastes pictus | (Castelnau, 1855) | MID | DEG | NE | HERB | THER |
98 | Osteichthyes | Pomacentridae | Stegastes variabilis | (Castelnau, 1855) | SHALL | DEG | LC | HERB | THER |
99 | Osteichthyes | Mugilidae | Mugil curema | Valenciennes, 1836 | SHALL | PEL | LC | HERB | TURF |
100 | Osteichthyes | Mugilidae | Mugil curvidens | Valenciennes, 1836 | SHALL | PEL | LC | HERB | TURF |
101 | Osteichthyes | Mugilidae | Mugil liza | Valenciennes, 1836 | SHALL | PEL | DD | HERB | TURF |
102 | Osteichthyes | Mugilidae | Mugil rubrioculus | Harrison, Nirchio, Oliveira, Ron & Gavíria, 2007 | SHALL | PEL | LC | HERB | TURF |
103 | Osteichthyes | Mugilidae | Mugil trichodon | Poey, 1875 | SHALL | PEL | LC | HERB | TURF |
104 | Osteichthyes | Polynemidae | Polydactylus virginicus | (Linnaeus, 1758) | SHALL | PEL | LC | OMNI | OMNI |
105 | Osteichthyes | Tripterygiidae | Enneanectes altivelis | Rosenblatt, 1960 | SHALL | DEG | LC | MINV | MINV |
106 | Osteichthyes | Dactylopteridae | Dactylopterus volitans | (Linnaeus, 1758) | MID | BRO | LC | MINV | SAND |
107 | Osteichthyes | Dactyloscopidae | Dactyloscopus foraminosus | Dawson, 1982 | SHALL | BRO | LC | MINV | SAND |
108 | Osteichthyes | Dactyloscopidae | Dactyloscopus tridigitatus | Gill, 1859 | SHALL | BRO | LC | MINV | SAND |
109 | Osteichthyes | Dactyloscopidae | Platygillellus brasiliensis | Feitoza, 2002 | SHALL | BRO | LC | MINV | SAND |
110 | Osteichthyes | Labrisomidae | Gobioclinus kalisherae | (Jordan, 1904) | VSHALL | DEG | LC | MINV | MINV |
111 | Osteichthyes | Labrisomidae | Labrisomus cricota | Sazima, Gasparini & Moura, 2002 | VSHALL | PEL | LC | MINV | MINV |
112 | Osteichthyes | Labrisomidae | Labrisomus nuchipinnis | (Quoy & Gaimard, 1824) | VSHALL | DEG | LC | MINV | MINV |
113 | Osteichthyes | Labrisomidae | Malacoctenus delalandii | (Valenciennes, 1836) | VSHALL | DEG | LC | MINV | MINV |
114 | Osteichthyes | Labrisomidae | Malacoctenus zaluari | Carvalho-Filho, Gasparini & Sazima, 2020 | VSHALL | DEG | LC | MINV | MINV |
115 | Osteichthyes | Labrisomidae | Paraclinus spectator | Guimarães & Bacelar, 2002 | VSHALL | PEL | LC | MINV | MINV |
116 | Osteichthyes | Labrisomidae | Starksia brasiliensis | (Gilbert, 1900) | VSHALL | PEL | LC | MINV | MINV |
117 | Osteichthyes | Chaenopsidae | Emblemariopsis signifer | (Ginsburg, 1942) | SHALL | DEG | LC | MCAR | MCAR |
118 | Osteichthyes | Atherinopsidae | Atherinella brasiliensis | (Quoy & Gaimard, 1825) | SHALL | PEL | LC | PLANK | DPLA |
119 | Osteichthyes | Hemiramphidae | Hemiramphus brasiliensis | (Linnaeus, 1758) | SHALL | PEL | LC | OMNI | OMNI |
120 | Osteichthyes | Hemiramphidae | Hyporhamphus roberti | (Valenciennes, 1847) | SHALL | PEL | LC | MCAR | MCAR |
121 | Osteichthyes | Hemiramphidae | Hyporhamphus unifasciatus | (Ranzani, 1841) | SHALL | PEL | LC | MCAR | MCAR |
122 | Osteichthyes | Belonidae | Strongylura timucu | (Walbaum, 1792) | SHALL | PEL | LC | MCAR | MCAR |
123 | Osteichthyes | Belonidae | Tylosurus acus | (Lacepède, 1803) | MID | PEL | LC | MCAR | PISC |
124 | Osteichthyes | Belonidae | Tylosurus crocodilus | (Péron & Lesueur, 1821) | MID | PEL | LC | MCAR | PISC |
125 | Osteichthyes | Blenniidae | Entomacrodus vomerinus | (Valenciennes, 1836) | SHALL | DEG | LC | HERB | THER |
126 | Osteichthyes | Blenniidae | Hypleurochilus fissicornis | (Quoy & Gaimard, 1824) | SHALL | DEG | LC | MINV | MINV |
127 | Osteichthyes | Blenniidae | Hypleurochilus aequipinnis | (Günther, 1861) | SHALL | DEG | LC | MINV | MINV |
128 | Osteichthyes | Blenniidae | Ophioblennius trinitatis | Miranda Ribeiro, 1919 | SHALL | DEG | LC | HERB | THER |
129 | Osteichthyes | Blenniidae | Parablennius marmoreus | (Poey, 1876) | SHALL | DEG | LC | OMNI | OMNI |
130 | Osteichthyes | Blenniidae | Parablennius pilicornis | (Cuvier, 1829) | SHALL | DEG | LC | OMNI | OMNI |
131 | Osteichthyes | Blenniidae | Scartella cristata | (Linnaeus, 1758) | SHALL | DEG | LC | HERB | THER |
132 | Osteichthyes | Rachycentridae | Rachycentron canadum | (Linnaeus, 1766) | MID | PEL | LC | MCAR | MCAR |
133 | Osteichthyes | Echeneidae | Echeneis naucrates | Linnaeus, 1758 | MID | PEL | DD | MCAR | MCAR |
134 | Osteichthyes | Carangidae | Alectis ciliaris | (Bloch, 1787) | MID | PAD | LC | MCAR | MCAR |
135 | Osteichthyes | Carangidae | Caranx bartholomaei | Cuvier, 1833 | MID | PAD | LC | MCAR | PISC |
136 | Osteichthyes | Carangidae | Caranx ruber | (Bloch, 1793) | DEEP | PAD | LC | MCAR | MCAR |
137 | Osteichthyes | Carangidae | Caranx crysos | (Mitchill, 1815) | MID | PAD | LC | MCAR | MCAR |
138 | Osteichthyes | Carangidae | Caranx hippos | (Linnaeus, 1766) | MID | PAD | LC | MCAR | MCAR |
139 | Osteichthyes | Carangidae | Caranx latus | Agassiz, 1831 | MID | PAD | LC | MCAR | MCAR |
140 | Osteichthyes | Carangidae | Caranx lugubris | Poey, 1860 | VDEEP | PAD | LC | MCAR | PISC |
141 | Osteichthyes | Carangidae | Chloroscombrus chrysurus | (Linnaeus, 1766) | MID | PAD | LC | PLANK | DPLA |
142 | Osteichthyes | Carangidae | Decapterus macarellus | (Cuvier, 1833) | MID | PAD | LC | MCAR | MCAR |
143 | Osteichthyes | Carangidae | Decapterus punctatus | (Cuvier, 1829) | MID | PAD | LC | MCAR | MCAR |
144 | Osteichthyes | Carangidae | Decapterus tabl | Berry, 1968 | DEEP | PAD | LC | MCAR | MCAR |
145 | Osteichthyes | Carangidae | Elagatis bipinnulata | (Quoy & Gaimard, 1825) | DEEP | PAD | LC | MCAR | PISC |
146 | Osteichthyes | Carangidae | Oligoplites saliens | (Bloch, 1793) | MID | PAD | LC | MCAR | MCAR |
147 | Osteichthyes | Carangidae | Oligoplites saurus | (Bloch & Schneider, 1801) | MID | PAD | LC | MCAR | MCAR |
148 | Osteichthyes | Carangidae | Selar crumenophthalmus | (Bloch, 1793) | MID | PAD | LC | PLANK | DPLA |
149 | Osteichthyes | Carangidae | Selene brownii | (Cuvier, 1816) | MID | PAD | LC | MCAR | MCAR |
150 | Osteichthyes | Carangidae | Selene setapinnis | (Mitchil, 1815) | MID | PAD | LC | MCAR | MCAR |
151 | Osteichthyes | Carangidae | Selene vomer | (Linnaeus, 1758) | MID | PAD | LC | MCAR | MCAR |
152 | Osteichthyes | Carangidae | Seriola dumerili | (Risso, 1810) | DEEP | PAD | LC | MCAR | PISC |
153 | Osteichthyes | Carangidae | Seriola rivoliana | Valenciennes, 1833 | VDEEP | PAD | LC | MCAR | PISC |
154 | Osteichthyes | Carangidae | Trachinotus carolinus | (Linnaeus, 1766) | MID | PAD | LC | MINV | MINV |
155 | Osteichthyes | Carangidae | Trachinotus falcatus | (Linnaeus, 1758) | MID | PAD | LC | MINV | MINV |
156 | Osteichthyes | Carangidae | Trachinotus goodei | Jordan & Evermann, 1896 | VSHALL | PAD | LC | MINV | MINV |
157 | Osteichthyes | Sphyraenidae | Sphyraena barracuda | (Edwards, 1771) | MID | PEL | LC | MCAR | MCAR |
158 | Osteichthyes | Sphyraenidae | Sphyraena guachancho | Cuvier, 1829 | MID | PEL | LC | MCAR | MCAR |
159 | Osteichthyes | Paralichthyidae | Citharichthys arenaceus | Evermann & Marsh, 1900 | SHALL | PEL | LC | MINV | MINV |
160 | Osteichthyes | Paralichthyidae | Citharichthys spilopterus | Günther, 1862 | SHALL | PEL | LC | MINV | MINV |
161 | Osteichthyes | Paralichthyidae | Paralichthys brasiliensis | (Ranzani, 1842) | SHALL | PEL | NE | MINV | MINV |
162 | Osteichthyes | Paralichthyidae | Syacium micrurum | Ranzani, 1842 | SHALL | PEL | LC | MINV | MINV |
163 | Osteichthyes | Paralichthyidae | Syacium papillosum | (Linnaeus, 1758) | SHALL | PEL | LC | MINV | MINV |
164 | Osteichthyes | Bothidae | Bothus lunatus | (Linnaeus, 1758) | MID | PEL | LC | MINV | MINV |
165 | Osteichthyes | Bothidae | Bothus ocellatus | (Agassiz, 1831) | DEEP | BRO | LC | MINV | MINV |
166 | Osteichthyes | Achiridae | Achirus lineatus | (Linnaeus, 1758) | SHALL | PEL | LC | MINV | SAND |
167 | Osteichthyes | Achiridae | Gymnachirus nudus | Kaup, 1858 | MID | PEL | LC | MINV | SAND |
168 | Osteichthyes | Cynoglossidae | Symphurus diomedeanus | (Goode & Bean, 1885) | MID | PEL | LC | MINV | MINV |
169 | Osteichthyes | Cynoglossidae | Symphurus tessellatus | (Quoy & Gaimard, 1824) | MID | PEL | LC | MINV | MINV |
170 | Osteichthyes | Syngnathidae | Hippocampus erectus | Perry, 1810 | VSHALL | LIV | VU | MINV | MINV |
171 | Osteichthyes | Syngnathidae | Hippocampus patagonicus | Piacentino & Luzzatto, 2004 | VSHALL | LIV | VU | MINV | MINV |
172 | Osteichthyes | Syngnathidae | Hippocampus reidi | Ginsburg, 1933 | VSHALL | LIV | NT | MINV | MINV |
173 | Osteichthyes | Syngnathidae | Halicampus crinitus | (Jenyns, 1842) | VSHALL | PEL | LC | MINV | MINV |
174 | Osteichthyes | Syngnathidae | Microphis lineatus | (Kaup, 1856) | VSHALL | PEL | DD | MINV | MINV |
175 | Osteichthyes | Syngnathidae | Syngnathus pelagicus | Linnaeus, 1758 | VSHALL | PEL | LC | MINV | MINV |
176 | Osteichthyes | Aulostomidae | Aulostomus strigosus | Wheeler, 1955 | MID | BAL | LC | MCAR | PISC |
177 | Osteichthyes | Fistulariidae | Fistularia tabacaria | Linnaeus, 1758 | SHALL | DEG | LC | MCAR | PISC |
178 | Osteichthyes | Trichiuridae | Trichiurus lepturus | Linnaeus, 1758 | MID | PEL | LC | MCAR | MCAR |
179 | Osteichthyes | Scombridae | Acanthocybium solandri | (Cuvier, 1832) | VDEEP | PEL | LC | MCAR | PISC |
180 | Osteichthyes | Scombridae | Auxis thazard | (Lacepède, 1800) | MID | PAD | LC | MCAR | MCAR |
181 | Osteichthyes | Scombridae | Euthynnus alletteratus | (Rafinesque, 1810) | MID | PAD | LC | MCAR | MCAR |
182 | Osteichthyes | Scombridae | Scomberomorus brasiliensis | Collette, Russo & Zavala-Camin, 1978 | MID | PEL | LC | MCAR | PISC |
183 | Osteichthyes | Scombridae | Scomberomorus cavalla | (Cuvier, 1829) | MID | PEL | LC | MCAR | PISC |
184 | Osteichthyes | Scombridae | Scomberomorus regalis | (Bloch, 1793) | MID | PEL | LC | MCAR | PISC |
185 | Osteichthyes | Scombridae | Thunnus albacares | (Bonnaterre, 1788) | VDEEP | PEL | NT | MCAR | PISC |
186 | Osteichthyes | Scombridae | Thunnus atlanticus | (Lesson, 1831) | VDEEP | PEL | LC | MCAR | PISC |
187 | Osteichthyes | Scombridae | Thunnus obesus | (Lowe, 1839) | VDEEP | PEL | VU | MCAR | PISC |
188 | Osteichthyes | Labridae | Bodianus pulchellus | (Poey, 1860) | VDEEP | PEL | LC | MINV | MINV |
189 | Osteichthyes | Labridae | Bodianus rufus | (Linnaeus, 1758) | MID | PEL | LC | MINV | MINV |
190 | Osteichthyes | Labridae | Clepticus brasiliensis | Heiser, Moura & Robertson, 2000 | DEEP | PEL | LC | PLANK | DPLA |
191 | Osteichthyes | Labridae | Doratonotus megalepis | Günther, 1862 | SHALL | PEL | LC | MINV | MINV |
192 | Osteichthyes | Labridae | Halichoeres bivittatus | (Bloch, 1791) | MID | PEL | LC | MINV | MINV |
193 | Osteichthyes | Labridae | Halichoeres brasiliensis | (Bloch, 1791) | SHALL | PEL | DD | MINV | MINV |
194 | Osteichthyes | Labridae | Halichoeres dimidiatus | (Agassiz, 1831) | MID | PEL | LC | MINV | MINV |
195 | Osteichthyes | Labridae | Halichoeres penrosei | Starks, 1913 | SHALL | PEL | LC | MINV | MINV |
196 | Osteichthyes | Labridae | Halichoeres poeyi | (Steindachner, 1867) | SHALL | DEG | LC | MINV | MINV |
197 | Osteichthyes | Labridae | Lachnolaimus maximus | (Walbaum, 1792) | SHALL | PEL | VU | MINV | MINV |
198 | Osteichthyes | Labridae | Thalassoma noronhanum | (Boulenger, 1890) | SHALL | PEL | LC | PLANK | DPLA |
199 | Osteichthyes | Labridae | Xyrichtys novacula | (Linnaeus, 1758) | MID | PEL | LC | MINV | MINV |
200 | Osteichthyes | Labridae | Xyrichtys splendens | Castelnau, 1855 | MID | PEL | LC | MINV | MINV |
201 | Osteichthyes | Scaridae | Cryptotomus roseus | Cope, 1871 | SHALL | DEG | LC | HERB | SCRP |
202 | Osteichthyes | Scaridae | Nicholsina usta | (Valenciennes, 1840) | SHALL | DEG | LC | HERB | EXCV |
203 | Osteichthyes | Scaridae | Scarus trispinosus | Valenciennes, 1840 | MID | DEG | EN | HERB | EXCV |
204 | Osteichthyes | Scaridae | Scarus zelindae | Moura, Figueiredo & Sazima, 2001 | MID | PEL | DD | HERB | SCRP |
205 | Osteichthyes | Scaridae | Sparisoma amplum | (Ranzani, 1841) | MID | PEL | LC | HERB | SCRP |
206 | Osteichthyes | Scaridae | Sparisoma axillare | (Steindachner, 1878) | MID | PEL | DD | HERB | SCRP |
207 | Osteichthyes | Scaridae | Sparisoma frondosum | (Agassiz, 1831) | MID | PEL | DD | HERB | SCRP |
208 | Osteichthyes | Scaridae | Sparisoma radians | (Valenciennes, 1840) | SHALL | PEL | LC | HERB | MALG |
209 | Osteichthyes | Centropomidae | Centropomus parallelus | Poey, 1860 | SHALL | PEL | LC | MCAR | MCAR |
210 | Osteichthyes | Centropomidae | Centropomus undecimalis | (Bloch, 1792) | SHALL | PEL | LC | MCAR | MCAR |
211 | Osteichthyes | Centropomidae | Centropomus pectinatus | Poey, 1860 | SHALL | PEL | LC | MCAR | MCAR |
212 | Osteichthyes | Gerreidae | Diapterus auratus | Ranzani, 1842 | VSHALL | PEL | LC | MINV | MINV |
213 | Osteichthyes | Gerreidae | Diapterus rhombeus | (Cuvier, 1829) | VSHALL | PEL | LC | MINV | MINV |
214 | Osteichthyes | Gerreidae | Eucinostomus argenteus | Baird & Girard, 1855 | VSHALL | PEL | LC | MINV | MINV |
215 | Osteichthyes | Gerreidae | Eucinostomus gula | (Quoy & Gaimard, 1824) | VSHALL | PEL | LC | MINV | MINV |
216 | Osteichthyes | Gerreidae | Eucinostomus havana | (Nichols, 1912) | VSHALL | PEL | LC | MINV | MINV |
217 | Osteichthyes | Gerreidae | Eucinostomus lefroyi | (Goode, 1874) | VSHALL | PEL | LC | MINV | MINV |
218 | Osteichthyes | Gerreidae | Eucinostomus melanopterus | (Bleeker, 1863) | VSHALL | PEL | LC | MINV | MINV |
219 | Osteichthyes | Gerreidae | Eugerres brasilianus | (Cuvier, 1830) | VSHALL | PEL | LC | MINV | MINV |
220 | Osteichthyes | Gerreidae | Gerres cinereus | (Walbaum, 1792) | VSHALL | PEL | LC | MINV | MINV |
221 | Osteichthyes | Gerreidae | Ulaema lefroyi | (Goode, 1874) | VSHALL | PEL | LC | MINV | MINV |
222 | Osteichthyes | Mullidae | Mulloidichthys martinicus | (Cuvier, 1829) | MID | PEL | LC | MINV | SAND |
223 | Osteichthyes | Mullidae | Pseudupeneus maculatus | (Bloch, 1793) | MID | PEL | LC | MINV | SAND |
224 | Osteichthyes | Mullidae | Upeneus parvus | Poey, 1852 | VDEEP | PEL | LC | MINV | SAND |
225 | Osteichthyes | Pempheridae | Pempheris schomburgkii | Müller & Troschel, 1848 | SHALL | PEL | LC | PLANK | DPLA |
226 | Osteichthyes | Clupeidae | Harengula clupeola | (Cuvier, 1829) | SHALL | PEL | LC | PLANK | DPLA |
227 | Osteichthyes | Clupeidae | Lile piquitinga | (Schreiner & Miranda Ribeiro, 1903) | SHALL | PEL | LC | PLANK | DPLA |
228 | Osteichthyes | Clupeidae | Opisthonema oglinum | (Lesueur, 1818) | SHALL | PEL | LC | PLANK | DPLA |
229 | Osteichthyes | Kyphosidae | Kyphosus sectatrix | (Linnaeus, 1758) | MID | PEL | LC | HERB | MALG |
230 | Osteichthyes | Serranidae | Alphestes afer | (Bloch, 1793) | SHALL | PEL | LC | MCAR | MCAR |
231 | Osteichthyes | Serranidae | Cephalopholis fulva | (Linnaeus, 1758) | MID | PEL | LC | MCAR | MCAR |
232 | Osteichthyes | Serranidae | Epinephelus adscensionis | (Osbeck, 1765) | MID | PEL | LC | MCAR | MCAR |
233 | Osteichthyes | Serranidae | Epinephelus itajara | (Lichtenstein, 1822) | DEEP | PEL | VU | MCAR | MCAR |
234 | Osteichthyes | Serranidae | Epinephelus morio | (Valenciennes, 1828) | VDEEP | PEL | VU | MCAR | MCAR |
235 | Osteichthyes | Serranidae | Gonioplectrus hispanus | (Cuvier, 1828) | VDEEP | PEL | LC | MCAR | MCAR |
236 | Osteichthyes | Serranidae | Hyporthodus niveatus | (Valenciennes, 1828) | VDEEP | PEL | VU | MCAR | MCAR |
237 | Osteichthyes | Serranidae | Mycteroperca bonaci | (Poey, 1860) | DEEP | DEG | NT | MCAR | PISC |
238 | Osteichthyes | Serranidae | Mycteroperca interstitialis | (Poey, 1860) | VDEEP | PAD | VU | MCAR | PISC |
239 | Osteichthyes | Serranidae | Mycteroperca venenosa | (Linnaeus, 1758) | VDEEP | PAD | NT | MCAR | PISC |
240 | Osteichthyes | Serranidae | Paranthias furcifer | (Valenciennes, 1828) | MID | PEL | LC | PLANK | DPLA |
241 | Osteichthyes | Serranidae | Dermatolepis inermis | (Valenciennes, 1833) | VDEEP | PEL | DD | MCAR | MCAR |
242 | Osteichthyes | Serranidae | Diplectrum formosum | (Linnaeus, 1766) | MID | PEL | LC | MCAR | MCAR |
243 | Osteichthyes | Serranidae | Diplectrum radiale | (Quoy & Gaimard, 1824) | MID | PEL | LC | MCAR | MCAR |
244 | Osteichthyes | Serranidae | Rypticus bistrispinus | (Mitchill, 1818) | VSHALL | PEL | LC | MINV | MINV |
245 | Osteichthyes | Serranidae | Rypticus saponaceus | (Bloch & Schneider, 1801) | VSHALL | PEL | LC | MINV | MINV |
246 | Osteichthyes | Serranidae | Rypticus subbifrenatus | Gill, 1861 | VSHALL | PEL | LC | MINV | MINV |
247 | Osteichthyes | Serranidae | Serranus baldwini | (Evermann & Marsch, 1899) | VSHALL | PEL | LC | MINV | MINV |
248 | Osteichthyes | Serranidae | Serranus flaviventris | (Cuvier, 1829) | VSHALL | PEL | LC | MINV | MINV |
249 | Osteichthyes | Priacanthidae | Heteropriacanthus cruentatus | (Lacepède, 1801) | MID | PEL | LC | MINV | MINV |
250 | Osteichthyes | Priacanthidae | Priacanthus arenatus | Cuvier, 1829 | MID | PEL | LC | MINV | MINV |
251 | Osteichthyes | Chaetodontidae | Chaetodon ocellatus | Bloch, 1787 | MID | PEL | LC | SINV | SINV |
252 | Osteichthyes | Chaetodontidae | Chaetodon sedentarius | Poey, 1860 | MID | PEL | LC | SINV | SINV |
253 | Osteichthyes | Chaetodontidae | Chaetodon striatus | Linnaeus, 1758 | MID | PEL | LC | SINV | SINV |
254 | Osteichthyes | Malacanthidae | Malacanthus plumieri | (Bloch, 1786) | MID | LIV | LC | MCAR | MCAR |
255 | Osteichthyes | Haemulidae | Paranisotremus moricandi | (Ranzani, 1842) | MID | PEL | LC | MINV | MINV |
256 | Osteichthyes | Haemulidae | Anisotremus surinamensis | (Bloch, 1791) | MID | PEL | DD | MINV | MINV |
257 | Osteichthyes | Haemulidae | Anisotremus virginicus | (Linnaeus, 1758) | MID | PEL | LC | MINV | MINV |
258 | Osteichthyes | Haemulidae | Conodon nobilis | (Linnaeus, 1758) | MID | PEL | LC | MINV | MINV |
259 | Osteichthyes | Haemulidae | Genyatremus luteus | (Bloch, 1790) | SHALL | PEL | DD | MINV | MINV |
260 | Osteichthyes | Haemulidae | Haemulon aurolineatum | Cuvier, 1830 | MID | PEL | LC | MINV | MINV |
261 | Osteichthyes | Haemulidae | Haemulon parra | (Desmarest, 1823) | MID | PEL | LC | MINV | MINV |
262 | Osteichthyes | Haemulidae | Haemulon melanurum | (Linnaeus, 1758) | DEEP | PEL | LC | MINV | MINV |
263 | Osteichthyes | Haemulidae | Haemulon plumieri | (Lacepède, 1801) | DEEP | PEL | LC | MINV | MINV |
264 | Osteichthyes | Haemulidae | Haemulon squamipinna | Rocha & Rosa, 1999 | MID | PEL | NE | MINV | MINV |
265 | Osteichthyes | Haemulidae | Haemulon atlanticus | Carvalho, Marceniuk, Oliveira & Wosiacki, 2020 | MID | PEL | LC | MINV | MINV |
266 | Osteichthyes | Haemulidae | Orthopristis scapularis | Fowler, 1915 | MID | PEL | LC | MINV | MINV |
267 | Osteichthyes | Haemulidae | Pomadasys ramosus | (Poey, 1860) | SHALL | PEL | NE | OMNI | OMNI |
268 | Osteichthyes | Haemulidae | Haemulopsis corvinaeformis | (Steindachner, 1868) | MID | PEL | LC | OMNI | OMNI |
269 | Osteichthyes | Lutjanidae | Etelis oculatus | (Valenciennes, 1828) | VDEEP | PEL | DD | MCAR | MCAR |
270 | Osteichthyes | Lutjanidae | Lutjanus alexandrei | Moura & Lindeman, 2007 | MID | PEL | NE | MCAR | MCAR |
271 | Osteichthyes | Lutjanidae | Lutjanus analis | (Cuvier, 1828) | MID | PEL | NT | MCAR | MCAR |
272 | Osteichthyes | Lutjanidae | Lutjanus buccanella | (Cuvier, 1828) | VDEEP | PEL | DD | MCAR | MCAR |
273 | Osteichthyes | Lutjanidae | Lutjanus cyanopterus | (Cuvier, 1828) | MID | PEL | VU | MCAR | MCAR |
274 | Osteichthyes | Lutjanidae | Lutjanus jocu | (Bloch & Schneider, 1801) | MID | PEL | DD | MCAR | MCAR |
275 | Osteichthyes | Lutjanidae | Lutjanus synagris | (Linnaeus, 1758) | MID | PEL | NT | MCAR | MCAR |
276 | Osteichthyes | Lutjanidae | Lutjanus vivanus | (Cuvier, 1828) | VDEEP | PEL | LC | MCAR | MCAR |
277 | Osteichthyes | Lutjanidae | Ocyurus chrysurus | (Bloch, 1791) | MID | PEL | DD | MCAR | MCAR |
278 | Osteichthyes | Lutjanidae | Rhomboplites aurorubens | (Cuvier, 1829) | MID | LIV | VU | MCAR | MCAR |
279 | Osteichthyes | Cirrhitidae | Amblycirrhitus pinos | (Mowbray, 1927) | MID | PEL | LC | MINV | MINV |
280 | Osteichthyes | Scorpaenidae | Scorpaena brasiliensis | Cuvier, 1829 | DEEP | PEL | LC | MCAR | MCAR |
281 | Osteichthyes | Scorpaenidae | Scorpaena inermis | Cuvier, 1829 | DEEP | PEL | LC | MCAR | MCAR |
282 | Osteichthyes | Scorpaenidae | Scorpaena plumieri | Bloch, 1789 | SHALL | PEL | LC | MCAR | MCAR |
283 | Osteichthyes | Scorpaenidae | Scorpaenodes caribbaeus | Meek & Hildebrand, 1928 | SHALL | PEL | LC | MCAR | MCAR |
284 | Osteichthyes | Triglidae | Prionotus punctatus | (Bloch, 1793) | MID | PEL | LC | MINV | MINV |
285 | Osteichthyes | Ephippidae | Chaetodipterus faber | (Broussonet, 1782) | MID | PEL | LC | MINV | MINV |
286 | Osteichthyes | Sciaenidae | Bairdiella ronchus | (Cuvier, 1830) | SHALL | PEL | LC | MINV | SAND |
287 | Osteichthyes | Sciaenidae | Cynoscion leiarchus | (Cuvier, 1830) | SHALL | PEL | LC | MINV | SAND |
288 | Osteichthyes | Sciaenidae | Eques lanceolatus | (Linnaeus, 1758) | VDEEP | PEL | LC | MINV | MINV |
289 | Osteichthyes | Sciaenidae | Larimus breviceps | Cuvier, 1830 | MID | PEL | LC | MINV | MINV |
290 | Osteichthyes | Sciaenidae | Menticirrhus americanus | (Linnaeus, 1758) | MID | PEL | LC | MINV | MINV |
291 | Osteichthyes | Sciaenidae | Menticirrhus martinicensis | (Cuvier, 1830) | MID | PEL | LC | MINV | MINV |
292 | Osteichthyes | Sciaenidae | Menticirrhus cuiaranensis | Marceniuk, Caires, Rotundo, Cerqueira, Siccha-Ramirez, Wosiacki & Oliveira, 2020 | MID | PEL | LC | MINV | MINV |
293 | Osteichthyes | Sciaenidae | Odontoscion dentex | (Cuvier, 1830) | MID | PEL | LC | MCAR | MCAR |
294 | Osteichthyes | Sciaenidae | Pareques acuminatus | (Bloch & Schneider, 1801) | SHALL | PEL | LC | MINV | MINV |
295 | Osteichthyes | Acanthuridae | Acanthurus bahianus | Castelnau, 1855 | SHALL | PEL | LC | HERB | TURF |
296 | Osteichthyes | Acanthuridae | Acanthurus chirurgus | (Bloch, 1787) | SHALL | PEL | LC | HERB | TURF |
297 | Osteichthyes | Acanthuridae | Acanthurus coeruleus | Bloch & Schneider, 1801 | SHALL | PEL | LC | HERB | TURF |
298 | Osteichthyes | Lobotidae | Lobotes surinamensis | (Bloch, 1790) | MID | PEL | LC | MCAR | MCAR |
299 | Osteichthyes | Sparidae | Archosargus probatocephalus | (Walbaum, 1792) | VSHALL | PEL | LC | HERB | MALG |
300 | Osteichthyes | Sparidae | Archosargus rhomboidalis | (Linnaeus, 1758) | VSHALL | PEL | LC | HERB | MALG |
301 | Osteichthyes | Sparidae | Calamus penna | (Valenciennes, 1830) | MID | PEL | LC | MINV | MINV |
302 | Osteichthyes | Sparidae | Calamus pennatula | Guichenot, 1868 | MID | PEL | LC | MINV | MINV |
303 | Osteichthyes | Antennariidae | Antennarius striatus | (Shaw, 1794) | SHALL | PEL | LC | MCAR | MCAR |
304 | Osteichthyes | Ogcocephalidae | Ogcocephalus vespertilio | (Linnaeus, 1758) | SHALL | UNK | LC | MINV | MINV |
305 | Osteichthyes | Ostraciidae | Acanthostracion quadricornis | (Linnaeus, 1758) | MID | BAL | LC | OMNI | OMNI |
306 | Osteichthyes | Ostraciidae | Acanthostracion polygonius | Poey, 1876 | MID | BAL | LC | OMNI | OMNI |
307 | Osteichthyes | Ostraciidae | Lactophrys trigonus | (Linnaeus, 1758) | MID | BAL | LC | OMNI | OMNI |
308 | Osteichthyes | Monacanthidae | Aluterus heudelotii | Hollard, 1855 | MID | BAL | LC | OMNI | OMNI |
309 | Osteichthyes | Monacanthidae | Aluterus scriptus | (Osbeck, 1765) | MID | BAL | LC | OMNI | OMNI |
310 | Osteichthyes | Balistidae | Balistes vetula | Linnaeus, 1758 | MID | BAL | NT | MINV | MINV |
311 | Osteichthyes | Balistidae | Canthidermis sufflamen | (Mitchill, 1815) | DEEP | BAL | LC | OMNI | OMNI |
312 | Osteichthyes | Balistidae | Melichthys niger | (Bloch, 1786) | DEEP | PEL | LC | OMNI | OMNI |
313 | Osteichthyes | Monacanthidae | Cantherhines macrocerus | (Hollard, 1853) | MID | DEG | LC | OMNI | OMNI |
314 | Osteichthyes | Monacanthidae | Cantherhines pullus | (Ranzani, 1842) | SHALL | PEL | LC | OMNI | OMNI |
315 | Osteichthyes | Monacanthidae | Stephanolepis hispida | (Linnaeus, 1766) | SHALL | PEL | LC | OMNI | OMNI |
316 | Osteichthyes | Tetraodontidae | Canthigaster figueiredoi | Moura & Castro, 2002 | VSHALL | BAL | LC | OMNI | OMNI |
317 | Osteichthyes | Tetraodontidae | Colomesus psittacus | (Bloch & Schneider, 1801) | MID | PEL | LC | MINV | MINV |
318 | Osteichthyes | Tetraodontidae | Lagocephalus laevigatus | (Linnaeus, 1766) | MID | PEL | LC | MINV | MINV |
319 | Osteichthyes | Tetraodontidae | Sphoeroides greeleyi | Gilbert, 1900 | VSHALL | PEL | LC | MINV | MINV |
320 | Osteichthyes | Tetraodontidae | Sphoeroides spengleri | (Bloch, 1785) | VSHALL | PEL | LC | MINV | MINV |
321 | Osteichthyes | Tetraodontidae | Sphoeroides testudineus | (Linnaeus, 1758) | VSHALL | PEL | LC | MINV | MINV |
322 | Osteichthyes | Diodontidae | Chilomycterus antillarum | Jordan & Rutter, 1897 | SHALL | PEL | LC | SINV | SINV |
323 | Osteichthyes | Diodontidae | Chilomycterus spinosus | (Linnaeus, 1758) | SHALL | PEL | LC | SINV | SINV |
324 | Osteichthyes | Diodontidae | Diodon holocanthus | Linnaeus, 1758 | SHALL | PEL | LC | SINV | SINV |
325 | Osteichthyes | Diodontidae | Diodon hystrix | Linnaeus, 1758 | SHALL | PEL | LC | SINV | SINV |
FIGURE 3 | Marine Protected Area (MPA) “Costa dos Corais” fishes biodiversity grouped in categories (see “Species categorization” in Material and Methods section and Tab. 1). A. Depth category. B. Dispersal potential. C. IUCN category. D. Trophic category. E. Functional group.
Discussion
Our checklist encompassed a total of 325 reef fish species at MPA Costa dos Corais. Pinheiro et al. (2018) recently compiled reef fish fauna at Southwestern Atlantic Ocean (SWA) with a total of 733 fish species. Our data represents 44% of all the SWA fish biodiversity inside the MPA territory. We highlight the vital large-scale significance of the largest Brazilian coastal MPA as one of the richest reef fish community on the SWA and reinforce the importance of this MPA on reef fish biodiversity and conservation. Additionally, we emphasize the importance of large scale and long-term surveys analyzing reef fish community compositions inside Brazilian MPAs. Initiatives as the present study, which often demonstrate unprecedented rich communities in otherwise poorly assessed and underestimated areas, are vital to enhance the effectiveness of MPAs acting as milestones for species monitoring and conservation (Figs. 4–13).
Deeper reefs (> 30 m depth) have been considered less impacted from anthropogenic effects compared to shallow reefs (< 30 m depth) (Jankowski et al., 2015; Pereira et al., 2018); although it is not universal statement (Rocha et al., 2018). On the studied multiple use MPA, several species once frequently recorded on shallow areas such as barracudas (Sphyraena barracuda), snappers (Lutjanus spp.) and large parrotfishes (Scarus spp. and Sparisoma spp.) are currently recorded nearly unique at deeper reefs. For instance, Pereira et al. (2021) demonstrated by local ecological knowledge (LEK) that fishers used to catch the endemic and endangered parrotfish Scarus trispinosus on shallow reefs three decades ago. Yet, the species is currently rarely recorded at shallow sites; with the remaining populations inhabiting deeper reefs (Pereira et al., 2021). Additionally, fish behavior has been altered inside the MPA following human presence (tourism and/or fishing activity). Benevides et al. (2019) indicated that the zoning applied by APACC has a positive effect on the caution of target species, wherein in the tourist zone, where fishing is prohibited, fish allows a closer approach to the diver than in fishing area. Pereira et al. (2020) also suggested that fish species on shallow reefs tend to be less tolerant to human presence compared to individuals inhabiting deeper reefs. This could be supporting the idea that deeper reefs could be currently used by fish as “refuge” areas that are likely to be safeguarding both fish communities and species behavior.
Rezoning process on MPA Costa dos Corais has been recently conducted and published (ICMBio, 2021). During rezoning process, a series of new no-take zones have been selected and thoughtfully discussed with local communities to increase coral reefs conservation and effective local community engagement. However, it should be noted that there are controversies regarding the shared use of multiple use locations by fishers. These differences are mainly due to the dispute over territories between fishers and the tourism industry. Catamarans, speedboats, and jet skis are perceived by artisanal fishers as negative impacts that keep fish away and cause damage to fishing gear. In this context, the importance of the management plan aims to regulate nautical activity is appreciated, supporting biodiversity conservation, as well as strengthening artisanal fishing activity and community-based tourism.
This no-take zones effort represents an increase of 900% in no-take zones inside the MPA Costa dos Corais that, together with local engagement, will represent a major conservation outcome on large scale reef fish conservation for the SWA Ocean. Most of these new no-take zones encompass both shallow and deeper reefs allowing a cross-shelf protection of reef biodiversity and ensuring connectivity of fish population between multiple habitats such as shallow and deeper reefs, seagrass and algae beds, mud/sand bottoms and rhodolith beds.
A total of 12% (40 species) from the present study are registered on the 2020 IUCN red list as Near Threatened (NT), Vulnerable (VU), Endangered (EN) or Critically Endangered (CR). Additionally, 9% (29 species) are on Brazilian red list species (ICMBio, 2018). Overexploitation of many Brazilian reef fish species have been reported by several authors (Di Dario et al., 2015; Pereira et al., 2021). Studies suggested that a total of 60% of the red‐listed marine species are primarily jeopardized by overfishing and the remaining 40% are threatened by habitat degradation and other non‐fisheries related impacts (Pinheiro et al., 2015). However, fisheries monitoring along Brazilian coast is nearly inexistent and only 0.8% of the coastal zone is included within no‐take areas (Di Dario et al., 2015; Vila‐Nova et al., 2014); regardless, consistent evidence of no‐take MPAs and strict no‐entry marine reserves demonstrating a fish recovery/spillover potential (Francini, Moura, 2008; Anderson et al., 2014; Motta et al., 2021; PHCP and collaborators, work in progress).
Coral cover and structural complexity have been described as an important variable influencing reef fish abundance and richness worldwide (Pereira, Munday, 2016; Darling et al., 2017). An increase on habitat complexity, food provision and shelter suggest that higher coral cover is likely to increase fish diversity (Leal et al., 2015; Mora, 2015). Previous studies have demonstrated up to 50% of coral cover on some areas of the MPA (PHCP and collaborators, work in progress), a much higher coral cover value compared to Brazilian coast with an average of 4.38% ± 8.17 (Aued et al., 2018). Hence, together with Abrolhos bank (up to 21% of coral cover) (Teixeira et al., 2021), MPA Costa dos Corais stands as one of highest coral cover areas on Brazilian coast. This trend likely to influence and explain such a high reef fish richness, featuring an unique and relevant site for fish biodiversity and conservation on the Southwestern Atlantic Ocean.
Brazilian marine biodiversity has been recently jeopardized due to a series of inconsistent governmental policies (Pinheiro et al., 2015; Miranda et al., 2020). Many SWA biodiversity hotspots are under risk such Fernando de Noronha Archipelago – UNESCO Heritage, Vitória‐Trindade Chain (VTC), Abrolhos Bank and MPA Costa dos Corais (Mazzei et al., 2017; Magris et al., 2020; Pimentel et al., 2020) that would compromise reef fish biodiversity on SWA. Hence, local strategies such as co-management, surveillance and local community compliance/engagement seems to be vital approaches for marine habitat conservation and maintenance of reef fish populations.
FIGURE 4 | Fish biodiversity from MPA Costa dos Corais. A. Hypanus marianae (35 cm of total length, TL. B. Ginglymostoma cirratum (~ 110 cm TL). C. Aetobatus narinari (~ 80 cm TL). D. Acanthurus bahianus (~ 15 cm TL). E. Acanthurus chirurgus (~ 20 cm TL). F. Acanthurus coeruleus (~ 30 cm TL). G. Apogon americanus (~ 5 cm TL). H. Ophioblennius trinitatis (~ 5 cm TL).
FIGURE 5 | Fish biodiversity from MPA Costa dos Corais. A. Bothus lunatus (~ 20 cm TL). B. Caranx bartholomaei (~ 20 cm TL). C. Caranx latus (~ 40 cm TL). D. Chloroscombrus chrysurus (~ 10 cm TL). E. Selene vomer (~ 25 cm TL). F. Centropomus undecimalis (~ 50 cm TL). G. Chaetodon ocellatus (~ 5 cm TL). H. Chaetodon striatus (~ 5 cm TL).
FIGURE 6 | Fish biodiversity from MPA Costa dos Corais. A. Amblycirrhitus pinos (~ 10 cm TL). B. Dactylopterus volitans (~ 20 cm TL). C. Chaetodipterus faber (~ 30 cm TL). D. Alphestes afer (~ 25 cm TL). E. Cephalopholis fulva (~ 30 cm TL). F. Epinephelus adscensionis (~ 20 cm TL). G. Epinephelus itajara (~ 110 cm TL). H. Mycteroperca bonaci (~ 15 cm TL).
FIGURE 7 | Fish biodiversity from MPA Costa dos Corais. A. Bathygobius soporator (~ 8 cm TL). B. Coryphopterus glaucofraenum (~ 5 cm TL). C. Ctenogobius saepepallens (~ 4 cm TL). D. Elacatinus figaro (~ 4 cm TL). E. Gramma brasiliensis (~ 5 cm TL). F. Paranisotremus moricandi (~ 15 cm TL). G. Anisotremus surinamensis (~ 20 cm TL). H. Anisotremus virginicus (~ 20 cm TL).
FIGURE 8 | Fish biodiversity from MPA Costa dos Corais. A. Haemulon aurolineatum (~ 18 cm TL). B. Haemulon parra (~ 25 cm TL). C. Haemulon plumieri (~ 25 cm TL). D. Haemulon squamipinna (~ 18 cm TL). E. Myripristis jacobus (~ 20 cm TL). F. Bodianus rufus (~ 20 cm TL). G. Clepticus brasiliensis (~ 30 cm TL). H. Halichoeres brasiliensis (~ 20 cm TL).
FIGURE 9 | Fish biodiversity from MPA Costa dos Corais. A. Halichoeres dimidiatus (~ 10 cm TL). B. Halichoeres poeyi (~ 12 cm TL). C. Scarus trispinosus (~ 25 cm TL). D. Scarus zelindae (~ 30 cm TL). E. Sparisoma amplum (~ 35 cm TL). F. Sparisoma axillare (~ 32 cm TL). G. Sparisoma frondosum (~ 30 cm TL). H. Sparisoma radians (~ 15 cm TL).
FIGURE 10 | Fish biodiversity from MPA Costa dos Corais. A. Gobioclinus kalisherae (~ 5 cm TL). B. Labrisomus cricota (~ 4 cm TL). C. Labrisomus nuchipinnis (~ 5 cm TL). D. Lutjanus alexandrei (~ 20 cm TL). E. Lutjanus analis (~ 22 cm TL). F. Lutjanus jocu (~ 30 cm TL). G. Lutjanus synagris (~ 20 cm TL). H. Ocyurus chrysurus (~ 18 cm TL).
FIGURE 11 | Fish biodiversity from MPA Costa dos Corais. A. Mulloidichthys martinicus (~ 20 cm TL). B. Pseudupeneus maculatus (~ 18 cm TL). C. Gymnothorax vicinus (~ 30 cm TL). D. Gymnothorax funebris (~ 80 cm TL). E. Muraena pavonina (~ 50 cm TL). F. Ogcocephalus vespertilio (~ 20 cm TL). G. Myrichthys ocellatus (~ 30 cm TL). H. Pempheris schomburgkii (~ 5 cm TL).
FIGURE 12 | Fish biodiversity from MPA Costa dos Corais. A. Holacanthus ciliaris (~ 30 cm TL). B. Pomacanthus paru (~ 25 cm TL). C. Abudefduf saxatilis (~ 10 cm TL). D. Azurina multilineata (~ 8 cm TL). E. Stegastes fuscus (~ 5 cm TL). F. Stegastes variabilis (~ 5 cm TL). G. Odontoscion dentex (~ 10 cm TL). H. Pareques acuminatus (~ 4 cm TL).
FIGURE 13 | Fish biodiversity from MPA Costa dos Corais. A. Scorpaena plumieri (~ 20 cm TL). B. Rypticus saponaceus (~ 22 cm TL). C. Serranus flaviventris (~ 8 cm TL). D. Calamus penna (~ 12 cm TL). E. Sphyraena barracuda (~ 60 cm TL). F. Hippocampus reidi (~ 8 cm TL). G. Synodus intermedius (~ 25 cm TL). H. Prionotus punctatus (~ 18 cm TL).
Acknowledgments
We would like to thank Julian Caon for map preparation. We also thank APACC management team and Projeto Conservação Recifal (PCR) staff for all the help during field activity. This work is part of the Long-Term Ecological Research – Brazil site PELD-CCAL (Projeto Ecológico de Longa Duração – Costa dos Corais Alagoas) funded by the Brazilian National Council for Scientific and We would like to thank Julian Caon for map preparation. We also thank APACC management team and Projeto Conservação Recifal (PCR) staff for all the help during field activity. This work is part of the Long-Term Ecological Research – Brazil site PELD-CCAL (Projeto Ecológico de Longa Duração – Costa dos Corais Alagoas) funded by the Brazilian National Council for Scientific and Technological Development – CNPq (#441657/2016-8), the Brazilian Coordination for the Improvement of Higher Education Personnel PELD/CAPES (23038.000452/2017-16) and the Research Support Foundation of the State of Alagoas – FAPEAL (#60030.1564/2016). This study was also supported by: Rufford Small Grants, Instituto Linha D’Água (Edital Linha D’Água Tubarões e Raias), “Reef fish under diver influence: behavioual changes and subsidies for management of underwater tourism” (FAPEAL 600030001270/2017), Conservation Leadership Program (CLP), Marine Conservation Action Fund, Mohamed Bin Zayed Species Conservation and The Prince Bernhard Nature Fund (PBNF) grants for PHCP and PCR. We thank Fundação SOS Mata Atlântica and Fundação Toyota for support during APACC field trips.
References
Adey WH. Coral reef ecosystems and human health: biodiversity counts! Ecosyst Health. 2000; 6(4):227–36. https://doi.org/10.1046/j.1526-0992.2000.006004227.x
Anderson AB, Bonaldo RM, Barneche DR, Hackradt CW, Félix-Hackradt FC, García-Charton JA, Floeter SR. Recovery of grouper assemblages indicates effectiveness of a marine protected area in Southern Brazil. Mar Ecol Prog Ser. 2014; 514:207–15. https://doi.org/10.3354/meps11032
Andrades R, Reis-Filho JA, Macieira RM, Giarrizzo T, Joyeux J-C. Endemic fish species structuring oceanic intertidal reef assemblages. Sci Rep. 2018; 8(10791):1–09. https://doi.org/10.1038/s41598-018-29088-0
Araújo ME, Mattos FMG, Melo FPL, Chaves LCT, Feitosa CV, Lippi DL et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar Environ Res. 2020; 160:e105038. https://doi.org/10.1016/j.marenvres.2020.105038
Aued AW, Smith F, Quimbayo JP, Cândido DV, Longo GO, Ferreira CEL, Witman JD, Floeter SR, Segal B. Large-scale patterns of benthic marine communities in the Brazilian Province. PLoS ONE. 2018; 13(6):e0198452. https://doi.org/10.1371/journal.pone.0198452
Benevides LJ, Cardozo-Ferreira GC, Ferreira CEL, Pereira PHC, Pinto TK, Sampaio CLS. Fear-induced behavioural modifications in damselfishes can be diver-triggered. J Exp Mar Biol Ecol. 2019; 514–515:34–40. https://doi.org/10.1016/j.jembe.2019.03.009
Brander LM, Van Beukering P, Cesar HSJ. The recreational value of coral reefs: A meta-analysis. Ecol Econ. 2007; 63(1):209–18. https://doi.org/10.1016/j.ecolecon.2006.11.002
Carvalho-Filho A, Sazima I, Lima SMQ, Almeida D, Mendes L, Dias RM et al. Review of the genus Malacoctenus (Actinopterygii: Labrisomidae) from the Southwestern Atlantic, with description of two new species. Zootaxa. 2020; 4819(3):499–520. https://doi.org/10.11646/zootaxa.4819.3.4
Cordeiro CAMM, Quimbayo JP, Nunes JACC, Nunes LT, Sissini MN, Sampaio CLS et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luis. Coral Reefs. 2021; 40(1):165–85. https://doi.org/10.1007/s00338-020-02026-1
Cowburn B, Moritz C, Birrell C, Grimsditch G, Abdulla A. Can luxury and environmental sustainability co-exist? Assessing the environmental impact of resort tourism on coral reefs in the Maldives. Ocean Coast Manage. 2018; 158:120–27. https://doi.org/10.1016/j.ocecoaman.2018.03.025
Darling ES, Graham NAJ, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs. 2017; 36:561–75. https://doi.org/10.1007/s00338-017-1539-z
Davenport J, Davenport JL. The impact of tourism and personal leisure transport on coastal environments: A review. Estuar Coast Shelf Sci. 2006; 67(1–2):280–92. https://doi.org/10.1016/j.ecss.2005.11.026
Di Dario F, Alves CBM, Boos H, Frédou FL, Lessa RPT, Mincarone MM et al. A better way forward for Brazil’s fisheries. Science. 2015; 347:1079. https://doi.org/10.1126/science.347.6226.1079-a
Emslie MJ, Logan M, Williamson DH, Ayling AM, MacNeil MA, Ceccarelli D et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr Biol. 2015; 25(8):983–92. https://doi.org/10.1016/j.cub.2015.01.073
Ferreira BP, Costa MBSF, Coxey MS, Gaspar ALB, Veleda D, Araujo M. The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs. 2013; 32:441–54. https://doi.org/10.1007/s00338-012-0992-y
Ferreira CEL, Floeter SR, Gasparini JL, Ferreira BP, Joyeux JC. Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr. 2004; 31(7):1093–106. https://doi.org/10.1111/j.1365-2699.2004.01044.x
Floeter SR, Halpern BS, Ferreira CEL. Effects of fishing and protection on Brazilian reef fishes. Biol Conserv. 2006; 128:391–402. https://doi.org/10.1016/j.biocon.2005.10.005
Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P et al. Atlantic reef fish biogeography and evolution. J Biogeogr. 2008; 35(1):22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x
Francini-Filho RB, de Moura RL. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat Conserv. 2008; 18(7):1166–79. https://doi.org/10.1002/aqc.966
Freitas JEP, Lotufo TMC. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. J Mar Biol Assoc UK. 2014; 95(3):623–33. https://doi.org/10.1017/S0025315414001404
Gibran FZ, Moura RL. The structure of rocky reef fish assemblages across a nearshore to coastal islands’ gradient in Southeastern Brazil. Neotrop Ichthyol. 2012; 10(2):369–82. https://doi.org/10.1590/S1679-62252012005000013
Gomes UL, Rosa RS, Gadig OBF. Dasyatis marianae sp. n.: A new species of stingray (Chondrichthyes: Dasyatidae) from the Southwestern Atlantic. Copeia. 2000; 2000(2):510–15. https://doi.org/10.1643/0045-8511(2000)000[0510:DMSNAN]2.0.CO;2
Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Cinner JE, Huchery C et al. Human disruption of coral reef trophic structure. Curr Biol. 2017; 27:231–36. https://doi.org/10.1016/j.cub.2016.10.062
Guabiroba HC, Pimentel CR, Mariano Macieira R, Cardozo-Ferreira GC, Teixeira JB, Gasparini JL et al. New records of fishes for the Vitória-Trindade Chain, southwestern Atlantic. Check List. 2020; 16(3):699–705. https://doi.org/10.15560/16.3.699
Hall AE, Cameron DS, Kingsford MJ. Partially protected areas as a management tool on inshore reefs. Rev Fish Biol Fish. 2021; 31:631–51. https://doi.org/10.1007/s11160-021-09654-y
ICMBio. Livro vermelho da fauna brasileira ameaçada de extinção. Brasília: ICMBio/MMA. 2018.
ICMBio. Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). Management Plan of MPA Costa dos Corais. Portaria N° 308 [Internet]. Brasília; 2021. Available from: https://www.icmbio.gov.br/apacostadoscorais/plano-de-manejo
Jankowski MW, Graham NAJ, Jones GP. Depth gradients in diversity, distribution and habitat specialisation in coral reef fishes: implications for the depth-refuge hypothesis. Mar Ecol Prog Ser. 2015; 540:203–15. https://doi.org/10.3354/meps11523
Leal ICS, de Araujo ME, da Cunha SR, Pereira PHC. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities. Mar Environ Res. 2015; 108:45–54. https://doi.org/10.1016/j.marenvres.2015.04.009
Leão ZMAN, Kikuchi RKP, Ferreira BP, Neves EG, Sovierzoski HH, Oliveira MDM et al. Brazilian coral reefs in a period of global change: A synthesis. Braz J Oceanogr. 2016; 64:97–116. https://doi.org/10.1590/S1679-875920160916064sp2
Leão ZMAN, Kikuchi RKP, Testa V. Corals and coral reefs of Brazil. In: Cortés J, editor. Latin American Coral Reefs. Amsterdam: Elsevier Science; 2003. p.9–52. https://doi.org/10.1016/B978-044451388-5/50003-5
Lellys NT, Moura RL, Bonaldo RM, Francini-Filho RB, Gibran FZ. Parrotfish functional morphology and bioerosion on SW Atlantic reefs. Mar Ecol Prog Ser. 2019; 629:149–63. https://doi.org/10.3354/meps13102
Maida M, Ferreira BP. Coral Reefs of Brazil: Overview and field guide. In: Proc. 8th Int Coral Reef Sym. 1997; 1(263):74.
Magris RA, Costa MDP, Ferreira CEL, Vilar CC, Joyeux JC, Creed JC et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers Distrib. 2020; 27(2):198–215. https://doi.org/10.1111/ddi.13183
Matheus Z, Francini-Filho RB, Pereira-Filho GH, Moraes FC, Moura RL, Brasileiro PS et al. Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS ONE. 2019; 14(1):e0210664. https://doi.org/10.1371/journal.pone.0210664
Mazzei EF, Bertoncini AA, Pinheiro HT, Machado LF, Vilar CC, Guabiroba HC et al. Newly discovered reefs in the southern Abrolhos Bank, Brazil: Anthropogenic impacts and urgent conservation needs. Mar Pollut Bulletin. 2017; 114(1):123–33. https://doi.org/10.1016/j.marpolbul.2016.08.059
Miranda RJ, Malhado ACM, Fabré N, Batista V, Santos R, Campos-Silva J et al. Integrating long term ecological research (lter) and marine protected area management: challenges and solutions. Oecologia Australis. 2020; 24(2):279–300. https://doi.org/10.4257/oeco.2020.2402.05
Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999; 29(2):215–33. https://doi.org/10.1016/S0921-8009(99)00009-9
Mora C, Andréfouët S, Costello MJ, Kranenburg C, Rollo A, Veron J et al. Coral reefs and the global network of marine protected areas. Science. 2006; 312(5781):1750–51. https://doi.org/10.1126/science.1125295
Mora C. Ecology of fishes on Coral Reefs. Cambridge: Cambridge University Press; 2015.
Motta FS, Moura RL, Neves LM, Souza GR, Gibran FZ, Francini CL et al. Effects of marine protected areas under different management regimes in a hot spot of biodiversity and cumulative impacts from SW Atlantic. Reg Stud Mar Sci. 2021; 47:101951. https://doi.org/10.1016/j.rsma.2021.101951
Morais RA, Ferreira CEL, Floeter SR. Spatial patterns of fish standing biomass across Brazilian reefs. J Fish Biol. 2017; 91(6):1642–67. https://doi.org/10.1111/jfb.13482
Moura RL, Abieri ML, Castro GM, Carlos-Júnior LA, Chiroque-Solano PM, Fernandes NC et al. Tropical rhodolith beds are a major and belittled reef fish habitat. Scientific reports. 2021; 11(1):1–10. https://doi.org/10.1038/s41598-020-80574-w
Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science. 2011; 333(6041):418–22. https://doi.org/10.1126/science.1204794
Paula YC, Schiavetti A, Sampaio CLS, Calderon E. The effects of fish feeding by visitors on reef fish in a Marine Protected Area open to tourism. Biota Neotrop. 2018; 18(3):e20170339. https://doi.org/10.1590/1676-0611-bn-2017-0339
Pereira PHC, Munday PL. Coral colony size and structure as determinants of habitat use and fitness of coral-dwelling fishes. Mar Ecol Prog Ser. 2016; 553:163–72. https://doi.org/10.3354/meps11745
Pereira PHC, Macedo CH, Nunes JACC, Marangoni LFB, Bianchini A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS One. 2018; 13(9):e0203072. https://doi.org/10.1371/journal.pone.0203072
Pereira PHC, Macedo CHR, de Lima GV, Benevides LJ. Effects of depth on reef fish flight initiation distance: implications of deeper reefs conservation. Environ Biol Fishes. 2020; 103(10):1247–56. https://doi.org/10.1007/s10641-020-01017-z
Pereira PHC, Moraes RL, Santos MVB, Lippi DL, Feitosa JLL, Pedrosa M. The influence of multiple factors upon reef fish abundance and species richness in a tropical coral complex. Ichthyol Res. 2014; 61:375–84. https://doi.org/10.1007/s10228-014-0409-8
Pereira PHC, Ternes MLF, Nunes JACC, Giglio VJ. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): evidence from Fishers’ knowledge. Biol Conserv. 2021; 254:108940. https://doi.org/10.1016/j.biocon.2020.108940
Petean FF, Naylor GJP, Lima SMQ. Integrative taxonomy identifies a new stingray species of the genus Hypanus Rafinesque, 1818 (Dasyatidae, Myliobatiformes), from the Tropical Southwestern Atlantic. J Fish Biol. 2020; 97(4):1120–42. https://doi.org/10.1111/jfb.14483
Pimentel CR, Rocha LA, Shepherd B, Phelps TAY, Joyeux JC, Martins AS et al. Mesophotic ecosystems at Fernando de Noronha Archipelago, Brazil (South-western Atlantic), reveal unique ichthyofauna and need for conservation. Neotrop Ichthyol. 2020;18(4):e200050. https://doi.org/10.1590/1982-0224-2020-0050
Pinheiro HT, Joyeux J-C, Moura RL. Reef oases in a seamount chain in the southwestern Atlantic. Coral Reefs. 2014; 33:1113–13. https://doi.org/10.1007/s00338-014-1211-9
Pinheiro HT, Mazzei E, Moura RL, Amado-Filho GM, Carvalho-Filho A, Braga AC et al. Fish biodiversity of the Vitória-Trindade Seamount Chain, Southwestern Atlantic: An updated database. PLoS ONE. 2015; 10(3):e0118180. https://doi.org/10.1371/journal.pone.0118180
Pinheiro HT, Rocha LA, Macieira RM, Carvalho-Filho A, Anderson AB, Bender MG et al. South-western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Divers Distrib. 2018; 24(7):951–65. https://doi.org/10.1111/ddi.12729
Reaka-Kudla ML. The global biodiversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson ED, editors. Biodiversity II: Understanding and protecting our biological resources. Washington, D.C.: Joseph Henry Press; 1997. p.2: 551.
Rocha LA, Pinheiro HT, Shepherd B, Papastamatiou YP, Luiz OJ, Pyle RL et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science. 2018; 361(6399):281–84. https://doi.org/10.1126/science.aaq1614
Rolim FA, Langlois T, Rodrigues PFC, Bond T, Motta FS, Neves LM et al. Network of small no-take marine reserves reveals greater abundance and body size of fisheries target species. PLoS ONE. 2019; 14(1):e0204970. https://doi.org/10.1371/journal.pone.0204970
Ruppert JLW, Vigliola L, Kulbicki M, Labrosse P, Fortin M-J, Meekan MG. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs. Glob Chang Biol. 2018; 24(1):e67–e79. https://doi.org/10.1111/gcb.13882
Sampaio CLS, Santander-neto J, Costa TLA. Hogfish Lachnolaimus maximus (Labridae) confirmed in the south-western Atlantic Ocean. J Fish Biol. 2016; 89(3):1873–79. https://doi.org/10.1111/jfb.13075
Smith-Vaniz WF, Tornabene L, Macieira RM. Review of Brazilian jawfishes of the genus Opistognathus with descriptions of two new species (Teleostei, Opistognathidae). ZooKeys. 2018; 794:95–133. https://doi.org/10.3897/zookeys.794.26789
Soares MO, Rossi S, Gurgel AR, Lucas CC, Tavares TC, Diniz B et al. Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic. Ocean Coast Manag. 2021; 210:105692. https://doi.org/10.1016/j.ocecoaman.2021.105692
Spalding M, Burke L, Wood SA, Ashpole J, Hutchison J, zu Ermgassen P. Mapping the global value and distribution of coral reef tourism. Mar Policy. 2017; 82:104–13. https://doi.org/10.1016/j.marpol.2017.05.014
Teixeira CD, Chiroque-Solano PM, Ribeiro FV, Carlos-Júnior LA, Neves LM, Salomon OS et al. Decadal (2006–2018) dynamics of Southwestern Atlantic’s largest turbid zone reefs. PloS One. 2021; 16(2):e0247111. https://doi.org/10.1371/journal.pone.0247111
Villa-Nova DA, Ferreira CEL, Barbosa FG, Floeter SR. Reef fish hotspots as surrogates for marine conservation in the Brazilian coast. Ocean Coast Manag. 2014; 102:88–93. https://doi.org/10.1016/j.ocecoaman.2014.09.005
Authors
Pedro H.C. Pereira1
,
Luís G.F. Côrtes1,2,
Gislaine V. Lima1,
Erandy Gomes1,2,3,
Antonio V.F. Pontes1,
Felipe Mattos3,
Maria E. Araújo2,3,
Flávio F. Junior4 and
Cláudio L.S. Sampaio4
[1] Projeto Conservação Recifal (PCR), Rua Vigário Tenório, 194, 50030-230 Recife, PE, Brazil. (PHCP) pedrohcp2@yahoo.com.br (corresponding author), (LGFC) luisguilherme.pcr@gmail.com, (GVL) gislainevanessalima@gmail.com, (EG) erandygomes13@gmail.com, (AVFP) antoniovitor.pcr@gmail.com.
[2] Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. da Arquitetura, 778-822, Cidade Universitária, 50740-540 Recife, PE, Brazil. (MEA) betharau08@gmail.com.
[3] Grupo de Ictiologia Marinha Tropical, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. da Arquitetura, 778-822, Cidade Universitária, 50740-540 Recife, PE, Brazil. (FM) felipemgmattos@hotmail.com.
[4] Laboratório de Ictiologia e Conservação, Universidade Federal de Alagoas, Unidade Educacional Penedo, Av. Beira Rio, s/n, Centro Histórico, 57200-000 Penedo, AL, Brazil. (FFJ) flavio.junior@arapiraca.ufal.br, (CLSS) claudio.sampaio@penedo.ufal.br.
Authors Contribution 
Pedro H. C. Pereira: Conceptualization, Funding acquisition, Data curation, Writing-original draft, Writing-review and editing.
Luís França Côrtes: Data curation, Conceptualization, Writing-review and editing.
Gislaine Vanessa de Lima: Conceptualization, Writing-review and editing.
Erandy Gomes da Silva: Conceptualization, Writing-review and editing.
Antônio Vitor Farias Pontes: Conceptualization, Writing-review and editing.
Felipe Mattos: Data curation, Conceptualization, Writing-review and editing.
Maria Elisabeth de Araújo: Data curation, Conceptualization, Writing-review and editing.
Flávio Ferreira Junior: Conceptualization, Writing-review and editing.
Cláudio Luis Santos Sampaio: Formal analysis, Funding acquisition, Investigation, Methodology, Writing-original draft, Writing-review and editing.
Ethical Statement
This study was conducted under full approval of the Sistema Nacional de Informação sobre Biodiversidade (SISBIO), permit # 67684–1.
Competing Interests
The authors declare no competing interests.
How to cite this article
Pereira PHC, Côrtes LGF, Lima GV, Gomes E, Pontes AVF, Mattos F, Araújo ME, Junior FF, Santos GS, Sampaio CLS. Reef fishes biodiversity and conservation at the largest Brazilian coastal Marine Protected Area (MPA Costa dos Corais). Neotrop Ichthyol. 2021; 19(4):e210071. https://doi.org/10.1590/1982-0224-2021-0071
Copyright
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Distributed under
Creative Commons CC-BY 4.0

© 2021 The Authors.
Diversity and Distributions Published by SBI
Accepted July 5, 2021 by Fernando Gibran
Submitted March 26, 2021
Epub December 13, 2021